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Abstract 
Does language reflect the categories of our mind or does it help create them? On one 
widespread view (cognitive priority), learning a language involves mapping words onto 
pre-existing categories, leaving little room for language to change the structure of 
conceptual content. On another view (linguistic priority), conceptual structure is 
shaped by experience with and use of language. We argue for the latter perspective and 
present experimental findings examining how nameability – the ease with which a 
feature can be named – influences problem-solving, category learning, and geometric 
reasoning. Even subtle manipulations affecting the availability of verbal labels can 
impact the categories people discover and use. Words do not simply reflect joints of 
nature, but are used to flexibly carve joints into nature. 
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1. Language and thought: how are they related? 

 
“The idea that language shapes thinking seemed plausible when scientists were in the dark about how 
thinking works” (Pinker, 1994, p. 58) 
 
Instead of language merely reflecting the cognitive development which permits and constrains its 
acquisition, language is being thought of as potentially catalytic and transformative of cognition” 
(Bowerman & Levinson, 2001, p. 13). 

 
Does language reflect the categories of our mind or does it help create them? For 

centuries, people have been asking versions of this question (see Leavitt, 2011; Lee, 1996 
for historical reviews). In the last several decades, this question has become the subject 
of increased empirical investigation. And yet, rather than moving toward consensus, the 
question of whether human cognition is transformed by language remains as 
contentious as ever (Bloom, 2002; Boroditsky, 2010; Carruthers, 2002; Gleitman & 
Papafragou, 2005; Lupyan, 2012a, 2016; Malt & Wolff, 2010; McWhorter, 2014; Pinker, 
1994; Wolff & Holmes, 2011). Why? 

We think a root cause of its contentious nature lies in two widespread 
assumptions: (1) that human concepts reflect objective reality and (2) that learning a 
word is simply learning a mapping between this objective reality and a sequence of 
sounds (or visual gestures in the case signed languages). In the first sections we review 
these assumptions and relate them to the question of linguistic influences on cognition. 
We next describe several mechanisms by which the words of a language can help 
structure knowledge and navigate cognitive problems, arguing that when we learn a 
word, we do not simply map its meaning onto a pre-existing conceptual state; instead, 
the learning process contributes to the formation of the conceptual category denoted by 
the word. We then review the idea of nameability — the ease with which an entity can be 
named — and describe ongoing empirical work investigating how differences in 
nameability relate to performance on a variety of categorization and reasoning tasks.   

 
1.1 Cognitive Priority and Linguistic Priority 

It is because thought and language seem so closely linked that language is so 
often used as a window to thought (Pinker, 2007). Acknowledging a link between 
language and thought raises the question of priority: “Which comes first? Thought or 
Language?” (Fodor, 2001). For Fodor and others working within the classical cognitivist 
tradition (e.g., Fodor, 1975; Mahon & Caramazza, 2009; Pinker, 1994; Snedeker & 
Gleitman, 2004) the answer is clear. Thought comes first. Language is its expression. A 
common argument for this position (sometimes referred to as the cognitive priority 
hypothesis) is that it is only possible to learn a word for a concept you already have (see 
Bowerman, 2000 for discussion and critique). This position is sometimes stated 
explicitly: “The meanings to be communicated, and their systematic mapping onto 
linguistic expressions, arise independently of exposure to any language” (Gleitman & 
Fisher, 2005, p. 133). More commonly, however, the assumption is an implied one. For 
example, in his polemical essay “The great Eskimo Vocabulary hoax”, Pullum (1989) 
ridicules the claim that languages differ in how they lexicalize snow by arguing that even 
if such differences in lexicalization were true, they would not be interesting: 
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“[E]ven if there were a large number of roots for different snow types in some Arctic language, this 
would not, objectively, be intellectually interesting; it would be a most mundane and unremarkable 
fact. [H]orse breeders have various names for breeds, sizes, and ages of horses; botanists have names 
for leaf shapes; interior decorators have names for shades of mauve… If these obvious truths of 
specialization are supposed to be interesting facts about language, thought, and culture, then I’m 
sorry, but include me out” (1989, pp. 278–279). 

 
Pullum’s tacit assumption that words map onto pre-existing categories leads him 

to conclude that it does not, and indeed cannot matter if some distinction is 
linguistically marked. The assumption seems to be that when there is a need to 
categorize something (horse breeds, shades of mauve, etc.), individuals will learn the 
relevant categories, and then may go on to develop a vocabulary to facilitate 
communication about those distinctions. He does not The possibility that words can 
help people learn the categories in the first place is never considered (Lupyan, 2012b for 
discussion).1  

If meanings indeed come first, where do they come from? Fodorian nativism 
(Fodor, 1975) aside, we can identify two sources of this knowledge. Some meanings (e.g., 
dog, water, spoon) come from identifying the joints of nature. Once identified, some of 
these joints are mapped onto words (see Lupyan, 2016; Lupyan & Lewis, 2017 for 
discussion). Of course, linguistic meanings are not limited to concrete categories. 
Instead, much — and on some analyses, most — of what we talk about is quite abstract 
(Lupyan & Winter, 2018). For abstract categories such as containment, causality, and 
time, researchers have often posited innate (or “core”) knowledge as the source of 
meanings that words map onto (e.g., Spelke & Kinzler, 2007). 

The opposing view, sometimes referred to as the linguistic priority hypothesis, is 
that our conceptual content and structure draws on (or on the strongest formulations 
requires) experience with natural language. On this view, we have the particular 
concepts we do, not because they reflect objective categories in the world or because we 
are endowed with them by our biology, but because these categories have been 
constructed by humans, and are transmitted via natural language. Consider the 
meanings conveyed by words like “game”, “furniture”, and “Sunday”. Clearly, these do 
not reflect objective joints of nature. Nor do they plausibly reflect innate content. Would 
a child never exposed to these linguistic terms still go on to have these same concepts? 
Or does learning these categories depend, in some way, on learning the corresponding 
words? The most famous proponent of the view that our conceptual structure 
importantly depends on natural language is Benjamin Lee Whorf: 

 
“The categories and types that we isolate from the world … we do not find there because they stare every 
observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which 
has to be organized by our minds—and this means largely by the linguistic systems in our minds…” 
(Whorf 1940/1956). 

 
In 2019 alone, there were over 600 references to the Whorf Hypothesis (see also 

Wolff & Holmes, 2011). But the idea that the close link between language and thought 

 
1 In some cognitive science and linguistics circles, claiming that the presence or absence of a word in a language has 
interesting consequences for cognition is referred to as the “No Word for X” fallacy. The blog Language Log 
aggregates such claims (mostly from the popular media) in their “No Word for X” archive 
(http://languagelog.ldc.upenn.edu/nll/?p=1081). 
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exists because our thoughts in part derive from natural language precedes Whorf, and 
we think a brief historical review is illuminating. 

Long before Whorf, John Locke argued that it is precisely because our thoughts 
are so affected by natural language, that we must guard against the vicissitudes of 
language lest it “cast a mist before our eyes and impose upon our understandings” 
(Locke, 1849, p. 356). Hardly a relativist, Locke nevertheless recognized that even “a 
moderate skill in different Languages” reveals that “though they have Words, which in 
Translations and Dictionaries, are supposed to answer one another; [there] is scarce one 
of ten, amongst the names of complex Ideas ... that stand for the same precise Idea” 
(Locke, 1849, p. 315). Different languages seem to identify different joints of nature. 

Arguing for a much more causal role of language, the philosopher, diplomat, and 
early linguist Wilhelm von Humboldt rejected the idea that words simply reflect pre-
existing abstractions, writing in 1816 that a word “is so little the sign of a concept that 
the concept cannot even come into being, much less be fixed, without it” (1816; as cited 
by Leavitt, 2011, p. 93). The categories imposed by language, argued Humboldt, are “not 
so much the means to represent truth once established, but rather the means to discover 
truth previously unknown”, and therefore the diversity of languages “is not one of 
sounds and signs, but a diversity of world views themselves” (Leavitt, 2011, p. 93). 

Nearly a century later, William James echoed this idea in his discussion of how 
one might go about learning to distinguish a claret from a burgundy. At first, wrote 
James, one might associate the names of these wines with various details of the 
experience, but “after a while the tables and other parts of the setting, besides the name, 
grow so multifarious as not to come up distinctly into consciousness, but [the] adhesion 
of each wine with its own name becomes more and more inveterate, at last each flavor 
suggests [its] own name and nothing else.” More than simply referring to the pre-
existing categories, the names which “differ far more than the flavors… help to stretch 
these latter farther apart” (James, 1890, p. 511).  
1.2 Two arguments against the cognitive priority hypothesis 

The cognitive priority view faces two serious problems. The first is accounting for 
the cross-linguistic diversity of vocabularies. If words map onto pre-existing concepts, 
why are there such large differences between the vocabularies of different languages? 
Some of these differences can be attributed to differences in culture. The development of 
specific artifacts and institutions would bring with them vocabularies that would be 
unnecessary in a culture lacking those artifacts and institutions. However, cross-
linguistic differences in vocabulary touch on all aspects of experience, including 
universal human experiences such as eating, drinking, carrying, and having sex (Evans 
& Levinson, 2009; Malt et al., 2015; Wierzbicka, 2009). The diversity revealed by cross-
linguistic analysis of semantics is often masked by a trick of typography, as when 
psychologists and philosophers use capitalized words to stand in for non-linguistic 
concepts: GIFT the concept vs. “gift” the word. This typographical convention assumes 
the existence of the posited concept independent of any linguistic experience, assuming 
the very thing that the cognitive priority view tries to argue for. 

The second problem is the problem of origin. If concepts come first, where do 
they come from? For some concrete concepts like TREE, a reasonable answer is that 
they come from analyzing nature at its joints. But even with such a seemingly 
straightforward category we quickly run into trouble. What makes a tree? What makes it 
different from a bush or shrub? The National Park Service offers the following 
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definition: “Generally, trees are over 20 feet tall and have trunks more than 2 inches in 
diameter at 4.5 feet above the ground” (USNPS, 2018). This hardly sounds like an 
obvious joint of nature and raises doubts as to whether someone who was never exposed 
to the word “tree” as used by English speakers would have the very same semantic 
representation of the concept TREE as someone whose knowledge of trees includes the 
experience with learning and using the word “tree”.  

The origin problem becomes more acute for abstract meanings. Though there 
might be fuzziness around the boundaries, someone who has never encountered the 
word “tree” would presumably come to have some concept of trees based on perceptual 
experiences alone. But this argument is difficult to maintain for abstract meanings 
(Lupyan & Winter, 2018). In learning English, we learn words such as “exciting”, 
“pathetic”, “miracle”, “lucky”, “barely”, “opinion”, “fun”, “somewhere” and “meanwhile”. 
An English learner who already speaks a language with close translations of these terms 
may well map these terms (with varying success) to corresponding terms in a language 
they already speak. But what about children learning English as a first language? What 
prior meanings would these words map onto? 

Can we solve this problem by appealing to innate knowledge? We think not. Even 
if infants come into the world with core knowledge in broad domains such as agency, 
causality, space, emotions, and an innate motivation to attend to these domains, it is 
still a far leap to go from such general knowledge to specific meanings that can be 
mapped onto the sort of abstract words mentioned above. It is difficult to escape the 
conclusion that the categories picked out by such abstract words may depend—in a 
rather strong way—on experience with language itself. 
 
1.3. Two challenges to the linguistic priority hypothesis 

If learning concepts such as “meanwhile”, “someplace”, and “fun” requires 
linguistic experience, then how did these words come to be in the first place? This is 
perhaps the chief critique of the idea that language helps structure our concepts (Bloom, 
2002). We will address this question directly in section 1.4. In the meantime, we readily 
admit that learning these words requires certain cognitive and perceptual pre-requisites. 
It is difficult to see how one could learn word meanings like “somewhere” with no 
prelinguistic notion of space; “meanwhile” with no prelinguistic notion of time; 
“nostalgic” with no ability to represent emotional states. Indeed, proponents of 
linguistic priority do not typically claim that children enter the world as blank slates 
depending on language for all of their mental content. For example, William James 
argued for the importance of verbal labels in learning perceptual categories, writing that 
the difference between experiences is “made to seem more substantial by recognizing 
the terms.” At the same time, James acknowledged that the labels are unlikely to do 
much if a person could not detect any differences between the experiences in the first 
place: “it is difficult to show coercively that naming … hardly distinguishable 
[experiences] is essential to their being felt as different at first” (1890, p. 512). Likewise, 
the starting point for Whorf was not a blank conceptual slate, but rather the 
aforementioned “kaleidoscopic flux”. To restate in less metaphoric terms: innate mental 
content and perceptual input from the world under-determine conceptual structure. 
What language does, on the linguistic priority view, is to help create order by 
“proposing” an organizational scheme to the flux. The answer to how words enter a 
language if they do not map onto pre-existing conceptual structure is that words create 
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their own structure. The challenge, of course, is to understand how and when this 
happens.  
 

 
1.4. Vocabulary as a joint of nature 

How can words help structure the mind? In a poignant analogy, Clark (1998) 
compares the relationship between words and concepts to the relationship between 
trees and the soil in which they grow. “If a tree is seen growing on an island, which do 
you suppose came first?” asks Clark. It is natural to assume, he acknowledges, that the 
island “provided the fertile soil in which a lucky seed came to rest.” (1998, p. 176). But “a 
revealing exception to this general rule [are mangroves]”. Mangrove seeds become 
trapped and send aerial roots that catch floating soil and various debris, which over time 
form a small island that traps progressively more soil:  

 
“Throughout this process, and despite our prior intuitions, it is the land which is progressively built by the 
trees … Something like the Mangrove effect, I suspect, is operative in some species of human thought. It is 
natural to suppose that words are always rooted in the fertile soil of pre-existing thoughts. But sometimes, 
at least, the influence seems to run in the other direction” (p. 176).  

 
We think the influence runs from words to thoughts more frequently than often 

supposed. We will argue that not only are patterns of lexicalization cognitively relevant, 
but that even small differences in nameability—the ease with which something can be 
named in a given language—have surprisingly large cognitive consequences. Such effects 
are expected on linguistic-priority accounts, but difficult to reconcile with a strong 
cognitive priority view. Before proceeding to the data, let us consider several reasons 
why it might matter whether a language lexicalizes a certain distinction using a frequent 
and compact verbal expression.   

 
1.4.1. A named distinction is a marked distinction 

While the reasons for lexicalizing a certain distinction are many, and certainly 
include cultural specialization of the type discussed by Pullum (1989), it is the 
consequences of lexicalization for language learners and users that are of psychological 
interest. Take color words as an example. Languages vary in the number of lexicalized 
color terms (Kay et al., 2011). Some have no words that unambiguously pick out 
differences in hue (Wierzbicka, 2006) (rendering the very question “what color is this?” 
untranslatable). Others, like English and Russian, have many color words. These 
differences in vocabulary stem from various historical factors such as dye production 
and mass-manufacture of objects that can vary arbitrarily in color (the informativeness 
of phrases like “grab me the blue one” hinges on there being objects that vary in color, 
but are otherwise functionally identical; something not generally found in the natural 
world) (Kay & Maffi, 1999). But the question of why languages have the number of color 
words they do is distinct from the question of what are the consequences of learning 
and using a language with a certain color vocabulary (Forder & Lupyan, 2019). 

One consequence of English lexicalizing certain basic colors (red, green, blue, 
etc.) is that all speakers will learn these distinctions in the course of learning English. 
Some English speakers will go on to learn many more color words beyond these basic 
ones. But all English speakers (even those who are congenitally blind) will, beginning at 
a young age, learn at least the basic color words, because these words are a core part of 
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modern English. Although all languages can develop color words if needed, this process 
is a gradual one, unfolding over decades or even centuries. Someone who is in a 
situation where it would be useful to refer to a specific hue but who learned a language 
that lacks color words is out of luck (just as English speakers are out of luck when trying 
to accurately name an odor, Majid & Burenhult, 2014).  

The same reasoning applies to words for numbers, shapes, spatial relations, and 
thousands of other words, each of which has been shaped by many generations of 
cultural evolution. It may be within some people’s capacity to invent these word 
meanings on the spot, but with these words in the language already, learners have a far 
simpler job— to learn the word meanings already used by the community rather than to 
discover them on their own.2 Learning the meaning of a word necessarily requires 
learning to distinguish the set of objects/relations/abstract ideas/etc. to which the word 
applies from the ones that it does not. Although there is nothing preventing a speaker 
from learning a non-lexicalized distinction, lexicalizing a distinction ensures that it is 
learned by all speakers of the language.  

 
1.4.2. Names discretize the continuous 

The world of perception and action is analog. Objects vary continuously in size, 
color, weight, and position. Object categories, while often seemingly all-or-none, tend to 
come in degrees. Whatever genetic markers may exist to unambiguously mark that a dog 
is really a dog, the perceptual fact is that some dogs are “doggier” than others. In 
contrast, the world of language is a world of discrete categories. It is categories all the 
way down. “Animal” is a category, but so is “dog” and “beagle” (albeit with a 
progressively narrower extension).3 

We can and do talk about degrees; we can say “a beagle is doggier than a 
bulldog”. But such expressions are still categorical. “Doggier” denotes a positive 
direction on a not-a-dog to dog dimension without specifying the precise value on that 
dimension. Expressions like “it is green” are clearly categorical, but so are hedges like “it 
is sort of green”. The latter refers to the category of colors that can be plausibly, but not 
typically described as green (though in practice such expressions may be more 
informative about the state of the speaker’s knowledge than about the colors in 
question). 

A consequence of this linguistic discretization is that words create equivalences 
that otherwise may not exist. In referring to a class of spatial relations by the word “on” 
English creates an equivalence class between otherwise rather dissimilar entities: a 
plate on a table, a painting on a wall, a handle on a door, etc. (Bowerman & Choi, 2001). 
To reiterate: it is not that representing the similarity between painting:wall and 
handle:door requires learning the word “on”. There may well be other, equally good 
nonlinguistic ways of relating these similarities. The point is that the relational 

 
2 Learners are almost assured of succeeding because if too many cannot, the unlearned meanings would not be 
transmitted to the next generation of speakers. Finding that some languages lexicalize certain distinctions is 
therefore prima facie evidence of the learnability of these distinctions by a large majority of the speech community. 
3 Proper names – Maggie, the Eiffel Tower – are also categories, narrower still. Although they denote specific 
individuals, the denotation extends in space and time and those experiences constitute categories. Important classes 
of linguistic terms that does not denote categories are logical terms such as “and”, “or” “not”, indefinite pronouns 
like “somebody” and “neither”, and highly relational words like “same”. 
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similarity between painting:wall and handle:door is necessarily learned by English 
speakers, because not learning it means they cannot use the word “on” properly.  

 
 
1.4.3. Names, dimensionality reduction, and compositionality 

The meanings of many words can be decomposed into simpler units (if this were 
not possible, writing dictionaries would be an even more daunting task). Even so, there 
is something unitary, something chunky, about a meaning conveyed by a word. We can 
decompose 100 into 10 x 10 just like we can decompose 10,000 into 10 x 1000, yet to an 
English-speaker, hundred feels more unitary than ten-thousand4. The word hundred 
seemingly compresses the more complex meaning of “ten tens” into a single chunk. This 
point is well-made by Levinson: 

 
“We don't have to think about a hundred as 'ten tens' when doing mental arithmetic, or aunt as 'mother's 
sister, or father's sister, or father's brother's wife, or mother's brother's wife' when greeting Aunt 
Mathilda” … “Composing complex concepts gives enormous power to our mental computations, and most 
of those complex concepts are inherited from the language we happen to speak.” (Levinson, 2003). 
 
As speakers of our native tongue, we learn (i.e., culturally inherit) thousands of “chunks” 
such as “hundred”. Might the availability of such chunks facilitate certain cognitive 
operations? 

As an initial test of this idea, we conducted a category-learning experiment in 
which participants had to learn one of two nearly identical category structures (Fig. 1) 
(see also Zettersten & Lupyan, 2019). On each trial, participants saw a category 
exemplar and had to assign it to one of two categories, at which point they received 
accuracy feedback. On standard accounts of categorization (e.g., Ashby & Maddox, 
2011), learning these categories involves integrating information across two dimensions: 
the height of the horizontal line along the y-axis and the position of the vertical line 
along the x-axis. The category structure is thus thought to be determined by these basic 
perceptual dimensions which have little to do with language. But there is an alternate 
way of representing this category space. In Figure 1A, many of the shapes can be named. 
Recognizing that the categories comprise shapes that can be named—roughly, as Ts and 
Ls—allows the learner to collapse the two-dimensional space into a simpler one-
dimensional one.5 If we simply rotate the stimuli 180° (Fig. 1B), we leave all perceptual 
features (and logical structure) unchanged, but make it less likely that people recognize 
any of the shapes as belonging to the T and L “chunks”, leaving the problem space two-
dimensional. 

We recruited 70 people to learn the category structure shown in Figure 1A or 
Figure 1B. Learners saw each shape individually and were asked to classify it as a 
member of category 1 or category 2. They then received immediate feedback on whether 
their response was correct. Participants were not told that they should try to name the 
shapes or that such an approach is useful. Each learner completed 60 trials (each shape 

 
4 Chinese uses a simple term for 10,000 (万) which, we expect, makes 10,000 a better “chunk” in Chinese than in 
English. 
5  Note that representing the category distinction in terms of T vs. L will not necessarily lead to 100% performance, 
since it might lead participants astray in some of the boundary cases. Nevertheless, we reasoned that grounding the 
categories in the T/L distinction should lead to higher accuracy. 
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was shown twice). Even in this short category learning task, participants in the 
condition with stimuli that are (for readers of a Latin script) easier-to-name 
outperformed participants in the harder-to-name (rotated) condition (Measier-to-name = 
75% ; Mharder-to-name = 70%), z = 2.32, p = .02 (see Fig. 1C). These results hint at how a 
subtle visual manipulation that makes visual stimuli easier to name can impact a 
seemingly straightforward category learning task. 
 

 
Fig. 1. (A). A-B Two classic “information-integration” category structures of putatively 
identical complexity. The category boundary is marked by the dashed line. (C) 
Participants learn (B) better than (A) because names (T-like vs. L-like) help reduce the 
dimensionality of (B), but not (A). 

 
2. When names organize the flux 

To really know if words help structure our minds requires manipulating people’s 
knowledge of language while holding all else equal—an experiment impossible on both 
practical and ethical grounds. What we can do, however, is measure and manipulate 
linguistic factors and examine how these relate to putatively nonlinguistic cognitive 
behaviors. Finding a correlation between a linguistic factor and performance on some 
cognitive task suggests that the two may be related. Finding that manipulating the 
linguistic variable selectively affects the putatively nonlinguistic one, suggests that 
language may be a driving factor. The T/L categorization study described above hints at 
how we can use subtle manipulations to examine influences of language on category 
learning. Further examples that extend this logic to other domains can be found in 
Lupyan (2012b, 2016) and Lupyan and Bergen (2016). In this section, we present data— 
much of it preliminary—testing the hypothesis that nameability — the ease with which 
people can name a certain object or relation — affects people’s ability to categorize, 
reason, and make inferences about those objects and relations. To do this, we first 
quantify and manipulate nameability, and then measure the consequences of these 
manipulations. 

 Any empirical investigation of nameability runs into an immediate challenge. 
Suppose it is discovered that a less nameable distinction leads to poorer performance 
when, e.g., learning a new category that relies on making this distinction. Does this 
mean that the ability to name helps people to categorize or that certain distinctions are 
inherently difficult, and therefore both difficult to learn and less likely to be named? On 
their own, none of the results we present here can unambiguously distinguish between 
these two possibilities. In sum, however, we believe the results present a compelling 
case for the causal power of verbal labels to influence learning and reasoning in adults, 
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and hint at even more significant effects in the development of children’s conceptual 
knowledge. We present these results not as a conclusive proof of the linguistic priority 
hypothesis or a bullet-proof case to convince the Whorfian skeptic. Instead, we hope to 
give our reader reason to doubt a strong form of the cognitive priority hypothesis and to 
provide novel evidence for the influence of linguistic factors on human cognition. 

 
2.1. Nameability defined  

We use the term nameability to refer to the ease with which people can name X 
where X can stand in for anything: an object, a relation, or an abstract idea. Something 
is highly nameable if it evokes the same verbal response on various occasions. 
Nameability is related to the more familiar and well-studied construct of name-
agreement—the extent to which different people agree on what X should be called. It 
turns out that disagreement between people on what something is called is highly 
correlated with the time it takes an individual to name that thing (Lachman, 1973). That 
name-agreement, defined at the level of a group, systematically predicts performance of 
individuals is not a logical necessity, but it enables us to use various measures of name-
agreement in the population as a proxy for what is happening in an individual mind. 

To obtain agreement-based measures of nameability, multiple participants are 
presented with some stimuli and asked to name them. Static images are most often 
used, but the procedure can be used with any stimuli, in principle. There are various 
ways of computing agreement-based nameability measures. Most measures focus on the 
consistency of participant’s responding. For instance, one classic measure computes the 
name agreement by determining what percentage of participants give the modal 
response (Brandimonte et al., 1992; Brodeur et al., 2010; Perry & Lupyan, 2016). A 
second measure is entropy of the naming responses (Brodeur et al., 2010; Snodgrass & 
Vanderwart, 1980), defined as: 

 

 
where k is to the number of different names given to an item and pi is the proportion of 
subjects giving each name. In this context, entropy measures how well one can predict 
the naming response of one person if you know the responses of other people. If 
participants all give the same verbal response, the verbal responses are perfectly 
predictive of each other and the entropy is zero. As the variability in participants’ 
responses increases, they become harder to predict from one another and entropy 
increases. Higher entropy therefore indicates lower nameability. A similar, highly 
correlated measure that focuses on the diversity of responses rather than their 
predictability per se is Simpson diversity (Simpson, 1949;  for recent application to 
nameability, see Majid et al., 2018; Zettersten & Lupyan, 2019). 

Another variant of a nameability measure based on between-person agreement 
that we used in some of the analyses reported below is naming divergence, which 
captures the inconsistency in participants’ naming responses: 
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For instance, if 6 participants respond to a color patch with the word “purple” and 4 
others respond with “mauve”, there are 2 unique words and 10 total words in the 
responses yielding a naming divergence of 0.2. If, however, 6 participants respond with 
“purple” and four others each respond with a different word ( “lavender”, “periwinkle”, 
“magenta”, and “violet”), we have 5 unique responses yielding naming divergence of 0.5.  

These example highlight the limitations of computing naming consistency based 
on the percentage of participants who give the modal response. In both of the examples 
above, the dominant name makes up 60% of the responses - meaning that a name 
agreement measure based on modal responses treats these two cases as equivalent. Both 
the entropy-based measure and the naming divergence measure capture the fact that 
there is more consistency in the case where the remaining 40% of participants use the 
same term than when they use different terms. In the following analyses, we will use the 
naming divergence measure; we obtain similar results using the entropy-based measure 
of name agreement. 

Name agreement is one dimension along which we can quantify nameability. 
Another dimension is the complexity of the verbal response. Other things being equal, 
something with a longer name (measured in number of words or number of clauses) is 
less nameable than something with a shorter one. More complex verbal expressions are 
more effortful to produce, but more importantly, they are less likely to be consistently 
produced. While it is logically possible that naming consistency could be independent of 
response length, in practice the two are strongly related. When a language lexicalizes a 
distinction, ensuring that it has a compact verbal expression, then, all else equal, people 
are more likely to use that term, leading to greater consistency. 

A quick Google search makes this point in the domain of color names. Among the 
colors that English lexicalizes are “yellow”, “green”, and “blue.” We can get a quick sense 
of their relative frequency by enumerating the number of webpages containing these 
terms as indexed by Google: 7.13, 14.14, and 15.31 billion, respectively. Expressions with 
modifiers are, by comparison, much less frequent, e.g., “light blue” (122 million) and 
“dark blue” (114 million). Like English, Russian lexicalizes yellow, green, and blue. As in 
English, we find approximately a 1:2 frequency difference between green (“zeleniy”: 105 
million) and yellow (“zheltiy”: 61 million)6. However, the lexicalization of blueness in 
Russian differs from its lexicalization in English. Russian does not have a single term 
that corresponds to the English meaning “blue.” Instead, Russian lexicalizes “dark blue” 
(siniy; синий) and “light blue” (goluboy; голубой). The frequency of “siniy” is, at 105 
million, roughly equal to that of  “zeleniy” (green), a basic color. The frequency of 
“goluboy” is, at 61 million, roughly equal to zheltiy (yellow), another basic color. There is 
no word or phrase in English that denotes a shade of blue that has anywhere close to 
this relative frequency. The category “light blue” is clearly more nameable in Russian 
than in English.  

In the analyses below, we capture this complexity-based sense of nameability by 
computing the number of content words a participant uses. For more complex stimuli 
that elicit multi-word responses, we also use a count of clauses.7 Notice that while 

 
6 The large absolute differences between English and Russian simply reflects the dominance of English-language 
websites in Google’s index. 
7  Although the two senses of nameability introduced here—naming consistency and naming complexity— often 
agree, we have generally found that naming consistency measures are more predictive when the naming task 
constrains participants’ responses to 1-2 words, and becomes less predictive as the length of responding increases. In 
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agreement-based measures of nameability cannot, by definition, be computed from 
individual respondents, only groups, this is not the case for complexity-based measures 
of nameability. 
 
2.2. Naming the difference: nameability and finding solutions to Bongard 
problems 
2.2.1. Nameability and complex problem-solving: The case of Bongard problems 

Bongard problems are a set of categorization problems developed by Mikhail 
Bongard (1967), a Russian computer scientist, who was interested in the automation of 
visual perception. Bongard’s initial 100 problems were later popularized in the English-
speaking world by Hofstadter (Hofstadter, 1979/1999) who used them as an illustration 
of the power of the human mind to find commonalities between images, and as test 
cases for models of human pattern recognition (Foundalis, 2006). Each problem 
consists of 12 images: 6 on the left and 6 on the right. The task is to discover the rule 
that distinguishes the 6 images on one side from the 6 images on the other. From this 
simple premise, Bongard, Hofstadter, Foundalis and others have created hundreds of 
fascinating problems ranging from simple (solvable in a few seconds) to extremely 
difficult.8 What is of interest is why some problems are easy and others difficult.  

An inspection of Figure 2 reveals that the answer often has little to do with 
perceptual factors. For example, from the perspective of a feature-based visual pattern 
detector, identifying what the six shapes on the left of Figure 2A all have in common is 
extremely complex (Linhares, 2000). Yet this problem is trivial for people. Consider 
now the problem in Figure 2B. A geometric pattern analyzer that was flummoxed by 
Figure 2A would have no problem here. A simple geometric feature— 
convexity—separates the shapes on the left from those on the right. The figures on the 
left are all convex; the shapes on the right are not. Despite the geometric simplicity of 
this problem, it poses substantial difficulty for our participants. In our data, only about 
21% of participants (English-speaking adults) discovered an acceptable solution. Note 
that although concavity/convexity is lexicalized in English, the terms “concave” and 
“convex” are not well known by most English speakers. While it is fair to say that 
“triangle” and “circle” are words one learns in the course of simply learning English, the 
same cannot be said for “concave” and “convex”. 

Figure 2C provides another instructive example. The figures here are more 
perceptually complex than in Figure 2B, yet there is a readily accessible verbal solution: 
the figures on the left represent “three-ness” in some way (edges, number of figures, 
number of lines, etc.), while the figures on the right represent “four-ness”. A far higher 
percentage of participants succeed at this problem (~70%), despite its apparent 
perceptual complexity. What makes problems A and C so easy, but problem B so hard? 
We think nameability has something to do with it. Is it merely a coincidence that the 
rule instantiated by problems A and C lends itself to a verbal expression that is both 
highly accessible (owing to its frequency) and compact while problem B does not? 
  

 
general, we focus on naming consistency when nameability data was based on short verbal responses, and on 
naming complexity when verbal responses were more open-ended (such as in the case of Bongard problems below). 
8 Foundalis comments in his dissertation that Hofstadter did not write down solutions to many of the problems he 
developed, and Foundalis ultimately found the solutions to many of these problems only with the help of responses 
from readers of his webpage (see http://www.foundalis.com/res/diss_research.html). 
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Fig. 2. Three example Bongard problems. Possible solutions to the problems are (A) 
triangle vs. circle, (B) convex vs. concave, and (C) “three-ness” vs. “four-ness” 
 

To examine the relationship between nameability and ease of solving Bongard 
problems, we first revisited data from Foundalis’ (2006) dissertation and examined 
whether the solution complexity of the ‘ideal’ solutions to each problem (as formulated 
by the problem inventors) correlated with solution success. The answer is clear: 
regardless of whether naming complexity is quantified as number of content words or 
number of clauses, problems with longer solutions are less likely to be solved (see Fig. 
3). Note that verbal complexity does not map onto perceptual complexity in any 
straightforward manner in these problems.  

 
Fig. 3. Relationship between solution accuracy and the naming complexity of the ideal 
solution, analyzed using data from Foundalis (2006). Naming complexity was assessed 
in terms of the number of clauses (left) and the number of unique content words (right). 
  

A problem with this initial analysis is that the solutions whose length we are 
measuring are the ‘ideal’ solutions according to the experimenters, rather than the 
solutions people actually give when trying to solve these problems. To examine whether 
similar relationships are observed between solution success rates and naming 
complexity, we tested a group of participants (n = 89) on a subset of 16 Bongard 
problems. Participants’ verbal description of their solution was subsequently coded for 
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accuracy. We found that problems with higher average verbal complexity (as measured 
by the average number of content words used in correct responses) and higher naming 
convergence (the percentage of unique words used across correct responses) were also 
more difficult for people to solve (see Fig. 4; verbal complexity: z = -4.87, p < .001; 
naming convergence: z = -3.00, p = .003). Thus, a powerful predictor of the difficulty of 
a Bongard problem is the compactness of its verbal description. 
  

 
Fig. 4. The relationship between verbal complexity as measured by (A) average number 
of content words in solutions provided by our participants (A), (B) naming divergence of 
content words (see section 2.1) in these same solutions. Each point represents a Bongard 
problem. 
 

These initial analyses suffer from two limitations. First, there is a circularity in 
relying on verbal descriptions both for determining participants’ accuracy and 
measuring the verbal complexity of normatively correct responses. In the next section, 
we will discuss new data aimed at both collecting verbal complexity measures 
independently from the original Bongard problems themselves, and collecting more 
objective measures of solution accuracy. A second, broader limitation is distinguishing 
correlation from causation. An alternative explanation for the relationship between 
nameability and performance is that more “difficult” distinctions—where difficulty is 
defined on some separate metric—are both more difficult to name and more difficult to 
describe. If true, then the observed correlations between problem difficulty and 
nameability do not reflect any causal influence of language on problem-solving. We will 
address this concern in sections 2.4 and 2.5. 
 
2.2.2. Overcoming circularity: verbal complexity predicts people’s ability to discover 
solutions to Physical Bongard Problems 

To help overcome the circularity that arises in using verbal solutions for both 
measuring accuracy and nameability, we collected nameability measures from a set of 
simplified Bongard problems that we developed with the aim of isolating the critical 
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dimension, and then using the nameability estimates to predict people’s performance on 
the full version of each problem.  

Rather than using the original Bongard problems, we used a variant of Bongard 
problems which depict simple physical events and relationships requiring participants 
to reason about similarities and differences between these events, and often requiring 
participants to mentally simulate how an event will unfold in time (Weitnauer & Ritter, 
2012). For example, in problem 9 (Figure 5A) what makes the scenes on the left 
different from the scenes on the right is that the two objects will move in the same 
direction in the scenes on the right, while they will move in opposite directions in the 
scenes on the left. Many of these problems are quite difficult for participants to solve, 
while others are comparatively simple (e.g. problem 4 in Fig. 5A).  

 
Fig. 5. (A) Example Physical Bongard Problems. Possible solutions to the 

problems are: (Problem 4) squares vs. circles; (Problem 11b) objects close to one 
another vs. objects far from one another; (Problem 19) at least one object travels 
through the air vs. all objects always maintain contact with the ground, and (Problem 9) 
objects move in opposite directions vs. items move in the same direction (B) Simplified 
versions that we used for collecting nameability data. These simplified versions seek to 
isolate the dimension most central to solving the full problem. 

 
We began by asking participants to identify what makes one set of scenes 

different from the other in the simplified versions of 11 physical Bongard problems (see 
Fig. 5B).9 We collected responses from 85 participants, each of whom provided verbal 
rules for 6 of the problems. After coding the correctness of each verbal description, we 
calculated an average complexity score of the verbal solutions by computing the average 
number of content words in correct verbal solutions for each of the 11 problems. We 
then tested a new set of participants (n = 83) on their ability to solve the original 
physical Bongard problems (see Fig. 5A). We found that the verbal complexity of the 

 
9 Many of these scenes were short animations that demonstrated the unfolding of the event over time, e.g., 
http://sapir.psych.wisc.edu/~zettersten/images/PBPPROBLEM Stims/namingStims/pbpProblem 09_naming.gif. 
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solutions provided for the simplified versions of the problems predicted participants’ 
ability to provide a correct verbal solution to the full versions of the problems: Problems 
with more complex verbal solutions were more difficult to solve, z = 2.46, p = .01 (see 
Fig. 6). The correlation between average accuracy on a problem and verbal complexity 
was r = -.60, p = .05 (Baird, Zettersten, Lupyan, unpublished data). 
 

 

 
Fig. 6. Relationship between verbal complexity of the solution (average number of 
content words in correct solutions) for simplified problems, and accuracy of verbal 
solutions on the original physical Bongard problems. Each point represents a problem. 
 

As a second step to overcoming circularity, we conducted an additional 
experiment (n=202) in which participants were asked to discover the solution to one of 
the 11 physical Bongard problems by sorting the scenes into groups. We found that 
verbal complexity predicted not only their ability to verbalize a correct solution (z = 
2.58, p = .01), replicating the previous result, but also led to greater objective accuracy 
in classifying new category exemplars, as measured by their ability to sort novel 
exemplars into the correct category  (z = 2.68, p = .007). 

To see why verbal complexity is so strongly related to accuracy in solving these 
particular problems, consider one reason Bongard problems are difficult in the first 
place. The key challenge is discovering what the relevant dimensions or features are for 
solving each problem. This is an open-ended task that changes from one Bongard 
problem to the next. In one problem, size is relevant; in the next, something about the 
contours of the shapes; the next might require representing each group in terms of a 
more abstract relation such as “same” and “different” or “threes” and “fours”. When do 
these features come to mind, and why are some easier to discover more than others? 
This is where we believe language plays a critical role. Whether a feature is discovered 

2

4

9

11

13

16

18
19 24

26

28

0.25

0.50

0.75

2.0 2.5 3.0 3.5 4.0 4.5
Average Number of Content Words for Solutions to Simplified Problems

A
cc

ur
ac

y 
of

 V
er

ba
l S

ol
ut

io
ns

 
on

 O
rig

in
al

 P
hy

si
ca

l B
on

ga
rd

 P
ro

bl
em



 

18 

may partly depend on how easily it can be formulated as a verbal hypothesis. Once 
formulated verbally, the hypothesis becomes easy to test against the images. On this 
account, the difficulty in discovering the rule in Figure 2B is, in part, due to the property 
of convexity being difficult to name for our participants.10 In the next section, we 
provide further evidence for the idea that easier-to-name visual features are more likely 
to be used by people when judging visual similarity. 

 
 
2.3. A shape by any other name is not as similar: Nameability predicts 
similarity judgments 

Does the nameability of features affect the weight that people give them? For 
instance, are objects more likely to be grouped together if they share a more nameable 
feature? We tested this question with a set of items with unfamiliar global shapes 
developed by Roland Fleming (pers. comm.). These items were created in pairs such 
that for each novel shape, there were several outline types (e.g., compare the left and 
right shapes in each pair in Fig. 7.). Some of these unusual outlines can be compactly 
described (“curved”, “bubbly”), while others do not lend themselves to compact 
descriptions (“kind of jaggedy splitting thing”). Does this difference in nameability 
influence how individuals reason about these unfamiliar shapes? 

 
Fig. 7. Example pairs of shapes and the verbal descriptions people provided to describe 
what makes the two shapes different. 
 

To answer this question, we first collected information on how easily people can 
describe the properties of shape outlines such as those shown in Fig. 7. We presented 
participants with pairs of shapes differing only in the outline type, then asked them to 
describe the difference (Fig. 8A). We computed the average number of content words 
participants (n=40) used to describe the surface outline differences (Fig. 8A). We then 
tested a separate group of participants (n = 50) in a triad task (Fig. 8B). On each trial, 
participants were asked to choose which of two images were more similar to a target 

 
10 Bongard’s original 100 problems are ordered roughly by difficulty (with a few notable exceptions to highlight the 
ease with which people make solve certain perceptually difficult problems such as Figure 2C). It is curious then that 
the concave/convex problem is presented very early at number 4. It is conceivable that the difficulty that English 
speakers have with this problem is not mirrored by Russian speakers (i.e., Mikhail Bongard himself and the original 
audience of his book). The Russian word for “concave” (“вогнутый”) is relatively rare, but the word for “convex” 
(“выпуклый”), literally “bulging”, is much more frequent than the English tranlation equivalent. For example, it is 
more than twice as frequent as the Russian word for “triangle” (“треугольник”). We speculate that the relative ease 
of naming convexity in Russian may enable Russian-speakers to do better on this problem. Bongard may have listed 
it early on because the solution was more obvious to him. 
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image. One of the choices always matched the image in global shape but differed in its 
outline type (shape match), while the other matched the outline type while differing in 
its outline (surface match). There was a strong correlation between participants’ 
likelihood of matching the images on surface outline (choosing the surface match) and 
the difficulty of verbally describing the particular surface outline (see Fig. 8C): Easier to 
describe surface outlines were more likely to be chosen as the feature by which to group 
items, r = -.69, t(15) = 3.54, p < .01. 

 
Fig. 8. The length of the verbal descriptions given for shape “surfaces” predicts the 
likelihood of “surface choices. Each point represents a different triad. 
 
2.4. Words as guides to category joints: Manipulating nameability in 
category learning tasks 

The previous task shows that how easily people can form verbal descriptions of 
features is associated with how likely those features are used when grouping together 
novel images. If nameability influences which features come to mind, might we find that 
people can learn novel categories more easily if they differ on more nameable features? 
Or are the similarity judgments we saw in the previous task ephemeral and easily 
overridden, such that verbally-based feature preferences ultimately have little 
consequence in shaping people’s category representations? The experiments we describe 
next show that nameability can have substantive consequences in categorization tasks in 
which participants must learn novel categories and are given explicit feedback on their 
performance. 

A lingering concern from many of the studies presented so far is that more 
‘complex’ categories are simply more difficult or more complex to verbalize. In recent 
work (Zettersten & Lupyan, 2019), we sought to test whether nameability affects 
people’s ability to learn novel rule-based categories when holding the underlying 
conceptual complexity of the categories constant. First, we analyzed data from a large-
scale online color naming study (N=134,727, Munroe, 2010) to determine the ease of 
naming a broad swath of different colors. We then selected a set of colors that were 
highly nameable (named according to their modal label by 80% - 85% of the population) 



 

20 

and a set of colors that were much more difficult to name (modal names used by 6% - 
10% of participants in the original naming task), while matching the color sets on 
distinctiveness. We then constructed two different categories with identical structure for 
the easy to name color set and the more difficult to name color set (see Fig. 9). For both 
categories, a single color was perfectly predictive of category membership, e.g. “red” vs. 
“brown” for the high nameability condition and “lavender” vs “olive”11 for the low 
nameability condition. Would categories composed of more nameable features be easier 
to learn than categories composed of less nameable features? 

Participants learned the categories with the identical conceptual structure more 
accurately when the underlying features of the category were more nameable (see Fig. 
9A). That is, they were more likely to learn the categories when the features were red 
and brown difficult-to-describe lavender and olive colors. This result is not restricted to 
particular kinds of features or category structures. We observed similar results when 
testing category learning for rule-based categories composed of more nameable (though 
still novel) shapes compared to less nameable novel shapes (see Fig. 9B), and for 
compositional categories that required combining shape and color information. 
Together, these findings suggest that controlling for the logical complexity of categories, 
those composed of more nameable features were easier to learn. By prioritizing some 
features over others, language can affect the ease with which categorical joints can be 
carved into the environment. An important limitation of these results is that both 
Bongard problems and the categorization tasks we described pertain to a subclass of 
categorization problems – those requiring rule-based solutions rather than the kind of 
family-resemblance structure that characterize many of the categories learned by young 
children and non-human animals. 
  

 
Fig. 9. Nameability of individual features predicts categorization accuracy for (A) color 
features and (B) shape features. The left side of (A) and (B) depicts the category 
structure and example stimuli in the high and low nameability conditions. The right 

 
11 Although these are modal names, “olive” and “lavender” are produced by only about 10% of respondents. 
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sides  show categorization performance for each training block showing superior 
performance for the more nameable colors (A) and shapes (B). 
 
 
2.5. Nameability and geometric reasoning: strengthening the case for a 
causal link 
 So far, we have shown that:(1) success on Bongard Problems – a type of category 
induction problem – varies with the ease of verbally expressing the rule/pattern that has 
to be induced (section 2.2); (2) the likelihood that a certain visual feature influences 
visual similarity is predicted by the ease of naming that feature (section 2.3); and (3) 
learning novel categories is greatly facilitated when the categories comprise easy-to-
name compared to difficult-to-name features (section 2.4).  

These three lines of evidence make it clear that nameability strongly predicts 
performance in a range of categorization tasks. One interpretation of these results is that 
the results support the linguistic priority thesis. Another interpretation, mentioned 
above, is that we have it exactly backwards. It may be that nameability is predictive 
because whatever causes conceptual difficulties also causes difficulties in naming. On 
this view, the causality runs from conceptual difficulty to nameability, rather than the 
other way around. This possibility would be in line with the cognitive priority thesis. 

The data presented in sections 2.2 and 2.3, while showing that nameability is 
predictive of performance on a variety of tasks, cannot distinguish causal direction. The 
category-learning data (section 2.4) does begin to distinguish them in that there does 
not appear to be an a priori metric on which the easy-to-name colors and shapes are 
simpler than the hard-to-name ones (Zettersten & Lupyan, 2019). The case for the 
linguistic priority thesis can be further strengthened in two ways: (1) by showing that 
the cognitive difficulty of appreciating certain distinctions varies with how nameable 
they are in different languages and (2) by showing that manipulating nameability affects 
performance selectively on items predicted to be most influenced by linguistic 
experience. 

In this section we summarize ongoing work that subjects the linguistic priority 
thesis to these two tests. The domain we use is geometric reasoning. We chose this 
domain because it has been explicitly claimed that basic geometric reasoning is 
independent of language (and culture more generally) and is part of people’s core 
knowledge (Dehaene et al., 2006).  

The task used by Dehaene et al. (2006) uses an odd-one-out design to tap into 
geometric reasoning. People are presented with groups of six figures and asked to select 
from each group the one figure that does not belong with the others (the “target”). 
Figure 10 shows two sample trials. The key evidence the authors use to support their 
argument that geometric reasoning is independent of language comes from a 
comparison of performance on this task by educated American adults and the 
Mundurukú. The Mundurukú are an Amazonian indigenous people without formal 
education and who do not possess a conventional vocabulary for describing the 
geometric relations in question. Although Americans performed much better on the task 
overall, there was a strong correlation (r~ 0.7 – 0.8) between item accuracy in the two 
groups. This high item correlation led Dehaene et al. (2006) to conclude that the 
Mundurukú shared geometric knowledge (“core geometry”) with American subjects 
despite lacking linguistic and other cultural sources for this knowledge. We used the 
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very same task used to support the claim of universality and non-language-dependence 
of geometric reasoning to reach the opposite conclusion. The results we report here are 
abbreviated; a full report is forthcoming (Lupyan et al., 2018). 

The first thing to note about this kind of odd-one-out task is that choosing the 
target requires identifying (either explicitly or implicitly) the dimension of variation that 
is most relevant. On many trials, choosing different dimensions will lead to different 
answers. For example, someone might identify surface area as the relevant dimension in 
Figure 10A and choose the top-right choice because it is the shape with the largest 
surface area. The targets designated as correct are defined on dimensions deemed 
geometrically relevant. Importantly, these dimensions create discrete rather than 
continuous differences between the target and non-targets. The difference between a 
square and a rectangle is one of kind: a square has all equal sides; a non-square 
rectangle does not. The second thing to notice about the task is that some of these 
dimensions are more nameable than others. For example, virtually everyone describes 
the distinction between the normatively correct target and the non-targets as “rectangle 
vs. square” (Fig. 10A). The distinction in Figure 10B – having to do with reflection 
symmetry – is relatively difficult to name.  

 
 
Fig. 10. Sample geometric reasoning trials with some of the responses produced by 
participants describing how the odd-one-out shape (target) differs from the non-target 
shapes. 

 
The first question we ask is whether nameability predicts solution accuracy. We 

use a complexity-based definition of nameability (the number of modifiers used on 
average when describing what makes the target different from the non-targets). 
Nameability is strongly correlated with performance (r =-.49, p<.01): the fewer 
modifiers people needed, the more accurate were the responses of a separate group of 
participants. We next examined which items showed the largest differences between the 
accuracy of our subjects (American adults) and the accuracy previously reported for 
Mundurukú participants. If items such as rectangles-vs-squares are easy for English 
speakers because they are easy to name, then it is these items that should show the 
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largest difference between the two groups. This is indeed what we found. English 
nameability was significantly correlated with the difference between American and 
Mundurukú (r =-.33, p=.04). Americans performed relatively well on the items that 
were most nameable in English. 

We next collected data on two additional populations: (1) Congenitally deaf 
children residing in a Chinese special school for the deaf who were deprived of normal 
language input for most of their childhood, compared to the performance to children 
with normal language input and (2) the Shawi, an indigenous group of horticulturalist 
traders from Northwestern Amazonia who speak a Kawapanan language. The Shawi we 
tested varied in formal education and knowledge of Spanish. Our results replicate 
Dehaene et al’s (2006) finding of substantial correlations in performance (r’s > .6) on 
this task even among these very disparate populations. However, children with impaired 
language input performed substantially worse (M = .50) than children with normal 
language input (M = .75; t = 4.1, p<.01). The performance of the former was predicted 
by proficiency with Chinese sign language. The Shawi performed poorly (M = .41) 
though, like the Mundurukú, considerably above chance (chance = .17). The Shawi’s 
performance was strongly modulated by their knowledge of Spanish. Importantly, 
neither the Mundurukú’s nor the Shawi’s responses were predicted by English 
nameability, suggesting that geometric relations that are easy to name are not 
universally accessible, but become easy when compact verbal descriptions are available. 
Evaluations of Chinese and Shawi nameability measures are in progress. An additional 
prediction, which we do not have sufficient data to test at present, is that the items on 
which children and adults differ the most should also be those that are most nameable 
by adults. 

Finally, we examined what happens when we manipulate language in our 
English-speaking adults by either asking people to verbally justify their chosen answer 
(a way of up-regulating the use of language/verbal strategies), and interfering with 
language by having participants repeat “a b c” while doing the task on half of the trials. 
Overt naming improved accuracy (t = 3.70, p<.01). This improvement could not be 
attributed to merely greater effort spent on the task. Conversely, verbal interference 
impaired performance (t = 2.76, p=.01). While overt naming increased performance for 
hard-to-name items (r = -.37, p=.02), verbal interference selectively impaired 
performance on the normally easy-to-name items (r = .35, p=.03).  

As in section 2.5, we believe the role that is played by language in this task is one 
of facilitating hypothesis formation. Presenting English speakers with five rectangles 
and a square—objects that are highly nameable in English—makes it easy to pose the 
hypothesis that the relevant distinction is between rectangles and squares. This 
hypothesis becomes less available when the distinction is less nameable, either because 
the lexicalized distinction is not readily available in the language (or simply unknown to 
the participant, as in the case of low-frequency terms like “concave”/”convex”), or 
because it was made less available by interfering with language during the task. 
 
3. Conclusion 

There is no doubt that humans, like other animals, enter the world with 
numerous biases that guide and constrain the conceptual knowledge we go on to 
develop. And yet, the sheer variety of ways there are to be human is a testament to the 
incredible flexibility of our species (Henrich, 2015; Prinz, 2014). Our success in adapting 
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to such varying environments requires the ability not only to learn from others, but to 
maintain an ever-growing repository of information to which children become exposed 
(we even have a word for this process: enculturation). Although the centrality of 
language to this process is widely acknowledged (Pinker, 2010), the role that language 
plays in structuring our minds is nevertheless frequently denied (sometimes by the very 
same people, cf. Pinker, 1994).  

We have argued for a constructive view of language in human cognition. The 
environmental experience of any one individual greatly under-determines any one 
conceptual scheme. Our language offers us a system of categories, most of which have 
undergone extended cultural evolution, and many of which we acquire “for free” in the 
course of learning a language. The way in which words help create categories are varied 
(see sections 1.2-1.4): they include both off-line mechanisms such as cohering otherwise 
disparate entities during word-learning, and on-line mechanisms such as helping to 
posit hypotheses and performing in-the-moment dimensionality reduction.  

Many of the findings we described here are preliminary. Taken alone, none of 
them unequivocally support the thesis that the vocabulary we learn as part of learning a 
language helps structure the mind. Yet taken together, we believe results like the ones 
reported here are difficult to reconcile with a strong cognitive-priority perspective. To 
us, these findings hint at the wealth of other effects that may be revealed through a 
systematic study of the effect of learning and using words on our conceptual structure. If 
simply making a distinction slightly more or less nameable can have the kinds of effects 
we describe, what might this mean for the more protracted developmental differences 
experienced by people learning languages with substantially different vocabularies? 
What might be the downstream effect of spending one’s childhood immersed in 
different linguistic environments? Clark’s (1998) analogy of the mangrove is useful here. 
Just as the effect of a mangrove seed on its landscape is small at first, so we think the 
effect that words have on the conceptual landscape are likely to magnify over 
development. At the same time, as one becomes more fluent with the vocabulary of a 
language, it becomes increasingly difficult to appreciate (and to study!) its influence on 
our cognition. It is difficult to appreciate that had it not been for the seeds that are the 
words “blue”, “triangle” and “hundred,” the ease with which we can think thoughts that 
contain these elements is made possible by the landscapes those seeds helped create. 
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