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Children learn words through an accumulation of interactions
grounded in context. Although many factors in the learning environ-
ment have been shown to contribute to word learning in individual
studies, no empirical synthesis connects across factors. We in-
troduce a new ultradense corpus of audio and video recordings of
a single child’s life that allows us to measure the child’s experience
of each word in his vocabulary. This corpus provides the first direct
comparison, to our knowledge, between different predictors of
the child’s production of individual words. We develop a series
of new measures of the distinctiveness of the spatial, temporal,
and linguistic contexts in which a word appears, and show that
these measures are stronger predictors of learning than frequency
of use and that, unlike frequency, they play a consistent role
across different syntactic categories. Our findings provide a con-
crete instantiation of classic ideas about the role of coherent ac-
tivities in word learning and demonstrate the value of multimodal
data in understanding children’s language acquisition.

word learning | language acquisition | multimodal corpus analysis |
diary study

dults swim effortlessly through a sea of words, recognizing

and producing tens of thousands every day. Children are
immersed in these waters from birth, gaining expertise in navi-
gating with language over their first years. Their skills grow
gradually over millions of small interactions within the context of
their daily lives. How do these experiences combine to support
the emergence of new knowledge? In our current study, we de-
scribe an analysis of how individual interactions enable the child
to learn and use words, using a high-density corpus of a single
child’s experiences and novel analysis methods for characterizing
the child’s exposure to each word.

Learning words requires children to reason synthetically,
putting together their emerging language understanding with
their knowledge about both the world and the people in it (1, 2).
Many factors contribute to word learning, ranging from social
information about speakers’ intentions (3, 4) to biases that lead
children to extend categories appropriately (5, 6). However, the
contribution of individual factors is usually measured either for a
single word in the laboratory or else at the level of a child’s
vocabulary size (4, 6, 7). Although a handful of studies have
attempted to predict the acquisition of individual words outside
the laboratory, they have typically been limited to analyses of
only a single factor: frequency of use in the language the child
hears (8, 9). Despite the importance of synthesis, both for theory
and for applications like language intervention, virtually no re-
search in this area connects across factors to ask which ones are
most predictive of learning.

Creating such a synthesis, our goal here, requires two ingred-
ients: predictor variables measuring features of language input and
outcome variables measuring learning. Both of these sets of mea-
surements can be problematic.

Examining predictor variables first, the primary empirical fo-
cus has been on the quantity of language the child hears. Word
frequencies can easily be calculated from transcripts (7, 8), and
overall quantity can even be estimated via automated methods
(10). Sheer frequency may not be the best predictor of word
learning, however. Although some quantity of speech is a prereq-
uisite for learning, the quality of this speech, and the interactions
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that support it, is likely to be a better predictor of learning (2, 11,
12). In the laboratory, language that is embedded within co-
herent and comprehensible social activities gives strong support
for meaning learning (3, 13). In addition, the quantity of speech
directed toward the child predicts development more effectively
than total speech overheard by the child (14).

Presumably, what makes high-quality, child-directed speech
valuable is that this kind of talk is grounded in a set of rich
activities and interactions that support the child’s inferences about
meaning (2, 11). Measuring contextually grounded talk of this type
is an important goal, yet one that is challenging to achieve at
scale. In our analyses, we introduce data-driven measures that
quantify whether words are used in distinctive activities and in-
teractions, and we test whether these measures predict the child’s
development.

Outcome variables regarding overall language uptake are also
difficult to measure, especially for young children. Language
uptake can refer to both word comprehension and word pro-
duction, with comprehension typically occurring substantially
earlier for any given word (15). In-laboratory procedures using
looking time, pointing, or event-related potentials can yield re-
liable and detailed measures of young children’s comprehension,
but, typically, only for a handful of words (e.g., refs. 14, 16). For
systematic assessment of overall vocabulary size, the only methods
standardly used with children younger than the age of 3 y are parent
report checklists (15) and assessment of production through
vocabulary samples (8). We adopt this second method here. By
leveraging an extremely dense dataset, we can make precise and
objective estimates of the child’s productive vocabulary through
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the identification of the first instance of producing an individual
word. Although this method does not yield estimates of com-
prehension vocabulary, production can be considered a conser-
vative measure: If a child is able to use a word appropriately, he
or she typically (although not always) can understand it as well.

In addition to the measurement issues described above,
studies that attempt to link input to uptake suffer from another
problem. The many intertwined connections between parent and
child (genetic, linguistic, and emotional) complicate direct causal
interpretations of the relationship between input and learning
(17). Some analyses use longitudinal designs or additional mea-
surements to control for these factors (e.g., refs. 7, 14). Here, we
take a different approach: We use a classic technique from cognitive
(18) and developmental psychology (19), the in-depth case study
of a single individual, treating the word as the level of analysis
rather than the child. We make distinct predictions about indi-
vidual words based on the particular input the child receives for
that word (holding the child and caregiving environment con-
stant across words).

Using this single-child case study, we conduct two primary
analyses. First, we measure the contribution of input frequency
in predicting the child’s first production of individual words and
examine how it compares with other linguistic predictors at a
word-by-word level, examining this relationship both within and
across syntactic categories. Next, we add to this analysis a set of
novel predictors based on the distinctiveness of the contexts in
which a word is used; these predictors dominate frequency when
both are included in a single model.

The contribution of this work is twofold. First, we develop a
set of novel methods for measuring both language uptake and
the distinctiveness of the contexts in which words appear and
show how these methods can be applied to a dense, multimodal
corpus. Second, we provide an empirical proof of concept that
these contextual variables are strong predictors of language
production, even controlling for other factors. Although the re-
lationship between the contexts of use for a word and its ac-
quisition has been proposed by many theorists (2, 11), it has yet
to be shown empirically. Because our empirical findings come
from correlational analyses of data from a single child, whose
individual environment is, by definition, unique, these findings
must be confirmed with much larger, representative samples and
experimental interventions to measure causality. Nevertheless,
the strength of the relationships we document suggests that such
work should be a priority.

Current Study

We conducted a large-scale, longitudinal observation of a single,
typically developing male child’s daily life. The full dataset consists
of audio and video recordings from all rooms of the child’s house
(Fig. S1) from birth to the age of 3 y, adding up to more than
200,000 h of data. For the current study, we focus on the child’s
life from 9-24 mo of age, spanning the period from his first
words (“mama” at 9 mo) through the emergence of consistent
word combinations. From our data, we identified 679 unique
words that the child produced. Although it is quite difficult to
extrapolate from this production-based measure exactly how the
child would have scored on a standardized assessment, 341 of the
child’s words appear on the MacArthur-Bates Communicative
Development Inventory Words and Sentences form. With these
words checked, he would have scored in approximately the 50th
percentile for vocabulary (15). By the end of the study, when the
child was 25 mo old, he was combining words frequently and his
mean length of utterance (MLU) was ~2.5 words.

Recording took place ~10 h each day during this period,
capturing roughly 70% of the child’s waking hours. Automatic
transcription for such naturalistic, multispeaker audio is beyond
the current state of the art, with results below 20% accuracy in our
experiments (20); therefore, using newly developed, machine-assisted
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speech transcription software (21), we manually transcribed
nearly 90% of these recordings. We only transcribed speech
recorded from rooms within hearing range of the child and during
his waking hours. The resulting high-quality corpus consists of ~8
million words (2 million utterances) of both child speech and
child-available speech by caregivers that could contribute to the
child’s linguistic input. Each utterance was labeled with speaker
identity using a fully automatic system (more details of data pro-
cessing and transcription are provided in SI Materials and Methods
and Figs. S2 and S3).

Our primary outcome of interest was the child’s production of
individual words. For each of the words the child produced in the
transcripts, we labeled the age of first production (AoFP) as the
point at which the child first made use of a phonological form
with an identifiable meaning [even though forms often change
(e.g., “gaga” for “water”); SI Materials and Methods]. These AoFP
events were identified automatically from transcripts and then
verified manually (Figs. S4-S7). Although the child’s abilities to
comprehend a word and to generalize it to new situations are
also important, these abilities are nearly impossible to assess with
confidence from observational data. In contrast, we were able to
estimate AoFP with high precision.

Predicting Production

Unlike smaller corpora, our dataset allows us to quantify and
compare predictors of word production. In our initial compari-
son, we focus on three variables: ease of producing a word,
complexity of the syntactic contexts in which it appears (22), and
amount of exposure to it (7). In each case, we use a very simple
metric: length of the target word (in adult phonemes); mean
length (in words) of the caregiver utterances in which the target
word occurs before the child first produces it (MLU); and log-
arithm of the average frequency of the target word’s occurrence
each day, again before the child’s first production. Although
there are more complex proxies for ease of production (23) or
syntactic complexity of the input contexts (24), these simple
computations provide robust, theory-neutral measures that can
easily be implemented with other corpora.

Each of these three predictors was a significant independent
correlate of AOFP (rpnones =0.25, ry .y =0.19, and 7.y =—0.18, all
P <0.001). Longer words and words heard in longer sentences
tended to be produced later, whereas those words heard more
frequently tended to be produced earlier. These relationships
remained relatively stable when all three factors were entered
into a single linear model (Fig. 14, baseline model), although the
effect of frequency was somewhat mitigated.

A notable aspect of this analysis is the role played by pre-
dictors across syntactic categories. Frequency of occurrence was
most predictive of production for nouns, although it had little
effect for predicates or closed-class words (Fig. 1). Higher use
frequency may allow children to make more accurate inferences
about noun meaning just by virtue of increased contextual co-
occurrence (25, 26). In contrast, the complexity of the syntactic
contexts in which predicate terms occur appears to be more
predictive of the age at which they are acquired (27). Like
predicates, closed-class words were also learned later and were
better predicted by MLU than by frequency. Those closed-class
words appearing in simple sentences (e.g., “here,” “more”) were
learned early, whereas those closed-class words typically found in
longer sentences were learned late (e.g., “but,” “if”), as would be
expected if producing these words depended on inferring their
meaning in complex sentences.

Successively incorporating predictors allows us to examine the
relationship between individual predictors and particular words
through improvements in predicted AoFP [Fig. 2 and online
interactive version (wordbirths.stanford.edu/)]. Long words like
“breakfast,” “motorcycle,” or “beautiful” are predicted to be learned
later when the number of phonemes is added to the model; words
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Fig. 1. Regression coefficients (+SE) for each predictor in a linear model predicting AoFP. Each grouping of bars indicates a separate model: a baseline model
with only the number of phonemes, MLU, and frequency or a model that includes one of the three distinctiveness predictors. Red/orange/purple bars indicate
distinctiveness predictors (spatial/temporal/linguistic). Coefficients represent number of days earlier/later that the child will first produce a word per SD
difference on a predictor. (Right) Three plots show these models for subsets of the vocabulary.

motion existed and then measured motion in the 487 resulting
clusters (most spanned 0.35-0.65 m?) during 10-s time windows
surrounding each word. Automatic motion detection is a robust
indicator of both the location and trajectories of human activity.
Temporal distributions were created based on the hour of the
day in which a word was uttered.

Linguistic context distributions were built by using a latent
Dirichlet allocation (LDA) topic model, which produced a set of
distinct linguistic topics based on a partition of the corpus into
a set of 10-min “documents” (28). At this temporal resolution,
language related to everyday activities, such as book reading and
mealtime, is identifiable and might span one or a few 10-min
episodes, yielding topics that reflect linguistic regularities related
to these activities. To map this distribution onto individual
words, we computed the distribution of topics for each document
within which a word occurred.

Once we had created context distributions for each dimension,
we computed the distinctiveness of words along that dimension.
We took the Kullback-Leibler (KL) divergence between the
distribution for each word and the grand average distribution
(e.g., the overall spatial distribution of language use across the
child’s home) (29). Because KL divergence estimators are biased
with respect to frequency (30), we explored a number of methods
for correcting this bias, settling on using linear regression to
remove frequency information from each predictor (SI Materials
and Methods). The resulting distinctiveness measures capture the
distance between the contextual distribution of the word and the
contextual distribution of language more generally. For example,

that often occur alone or in short sentences like “no,” “hi,” and
“bye” are predicted to be learned earlier when MLU is added.
Although previous work on vocabulary development has relied
on between-child analyses of vocabulary size, our analyses illustrate
how these trends play out within the vocabulary of a single child.

Quantifying Distinctive Moments in Acquisition

Jerome Bruner hypothesized the importance of “interaction for-
mats” for children’s language learning (11). These formats were
repeated patterns that were highly predictable to the child, in-
cluding contexts like mealtime or games like “peek-a-boo,”
within which the task of decoding word meaning could be situated.
He posited that inside these well-understood, coherent activities,
the child could infer word meanings much more effectively. Such
activities might therefore play a critical role in learning.

Inspired by this idea, we developed a set of formal methods for
measuring the role of such distinctive moments in word learning.
We examined three dimensions of the context in which a word
appears: the location in physical space where it is spoken, the
time of day at which it is spoken, and the other words that appear
nearby it in the conversation. We hypothesized that distinctive-
ness in each of these dimensions would provide a proxy for
whether a word was used preferentially in coherent activities.

For each dimension (time, space, and language), we created a
baseline distribution of the contexts of language use generally
and measured deviations from it. We derived spatial distribu-
tions from motion in the videos, capturing the regions in the
child’s home where there was motion while words were being
used. We first clustered the pixels of video in which coherent

Frequency + Phonemes + MLU (Base) Base + Spatial Distinctiveness Base + Temporal Distinctiveness Base + Linguistic Distinctiveness

Nouns
® 22
< Closed class
S Other
(o] breakfast & B
? e regkfast
=20+ breakfast ¢ motorcycle] P
~ ) motorcycle @ o
o motercycle motorcycle’
'S wheel
o . 1 & o4 3 I
< 18 obath _£at moon r:)re“’k("“ Jath . ibeel
8 Jishecat oW ; th‘ i patly - wm oo Whee f,gh"r'a!r :moor 3
NOgyes e bath® *c ¢ ¢ ) i 1
§ o eYES *b\’ém n%:‘wﬂ?)y‘eg cal‘ dishdcar ) | m rog yes byel |éni
'8 16+ écar | noon syes oD\/e Y& ot
gle)
r fish °
o §
14+
T T T T T T T T T T T T T T T T
10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25

True Age of First Production (Months)
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words like “fish” or “kick” have far more distinct spatial, tem-
poral, and linguistic distributions than the word “with” (Fig. 3).

The more tied a word is to particular activities, the more
distinctive it should be along all three measures, and the easier it
should be to learn. Consistent with this hypothesis, contextual
distinctiveness (whether in space, time, or language) was a strong
independent predictor of the child’s production. Each of the three
predictors correlated with the child’s production more robustly
than frequency, MLU, or word length, with greater contextual

distinctiveness leading to earlier production (rgpatial =—0.40,
T'temporal = —0.34, Tinguistic = —0.28, all P <0.001).

These relationships were maintained when the distinctiveness
predictors were entered into the regression models described
above (Fig. 14). Because the distinctiveness predictors were
highly correlated with one another (»=0.50-0.57, all P <0.001;
Fig. S8), we do not report a single joint analysis [although it is
available in our interactive visualization (wordbirths.stanford.edu/)];
models with such collinear predictors are difficult to interpret.
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Fig. 3. Examples of eight spatial, temporal, and linguistic context distributions for words. Spatial distributions show the regions of the house where the word was
more (red) and less (blue) likely than baseline to be used. Rooms are labeled in the topmost plot. Temporal distributions show the use of the target word throughout
the day, grouped into 1-h bins (orange) and compared with baseline (gray). Linguistic distributions show the distribution of the word across topics (purple), compared
with the baseline distribution (gray). The top five words from the three topics in which the target word was most active are shown above the topic distribution.
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Nevertheless, the distinctiveness predictors did make different
predictions for some words. For example, the words “diaper”
and “change” were highly concentrated spatially but quite diffuse
in time, consistent with their use in a single activity (Table S1).

All three distinctiveness measures were significant predictors
of AoFP, with spatial distinctiveness and temporal distinctive-
ness being the strongest predictors in their respective models.
The strength of word frequency was reduced dramatically in all
models, despite its very low correlation with the distinctiveness
predictors (r values between —0.09 and —0.02; Tables S2-S6).

Our distinctiveness measures did not simply pick out different
syntactic categories. Instead, and in contrast to word frequency,
they had relatively consistent effects across classes (Fig. 1). For
predicates, there was essentially no effect of frequency, but all
three distinctiveness predictors still had significant effects. In
contrast, frequency was still a strong predictor for nouns even
when distinctiveness was included. In some models of closed-
class words, frequency was even a positive predictor of AoFP
(higher frequency leading to later production), presumably be-
cause the most frequent closed-class words are among the most
abstract and least grounded in the details of specific contexts
(e.g., “the,” “and,” “of”).

The distinctiveness predictors also did not simply recreate
psycholinguistic constructs like imageability. We identified the
430 words in the child’s vocabulary for which adult psycholin-
guistic norms were available (31). Within this subset of words, all
three distinctiveness factors were still significant predictors when
controlling for factors like imageability and concreteness.

In sum, despite the radically different data they were derived
from (video of activities, time of day for each utterance, and
transcripts themselves), the three distinctiveness variables showed
strong correlations with one another and striking consistency as
predictors of the age at which words were first produced. This
consistency supports the hypothesis that each is a proxy for a
single underlying pattern: Some words are used within coherent
activities like meals or play time (e.g., breakfast, kick), whereas
others are used more broadly across many contexts. These dif-
ferences may be a powerful driver of word learning.

Conclusions

Children learn words through conversations that are embedded
in the context of daily life. Understanding this process is both an
important scientific question and a foundational part of building
appropriate policies to address inequities in development. To
advance this goal, our work here created measures of the
grounded context of children’s language input, and not just its
quantity. We used distributional distinctiveness of words in space,
time, and language as proxies for the broader notion of their
participation in distinctive activities and contexts. We hypothe-
sized that these activities provide consistent, supportive envi-
ronments for word learning.

We found support for this hypothesis in dense data from a
single child. Across words and word categories, those words that
were experienced in more distinctive contexts were produced
earlier. Because the distinctiveness measures, especially spatial
distinctiveness, were more predictive of learning than quantity of
linguistic exposure, our findings support the utility of probing the
contexts within which words are used and provide a strong ar-
gument for the importance of multimodal datasets.

The causal structure of language acquisition is complex and
multifactorial. The greater children’s fluency is, the greater is the
complexity of their parents’ language (32), and the more words
children know, the better they can guess the meanings of others
(5). In the face of this complexity, about which relatively little is
still known, we chose to use simple linear regression, rather than
venturing into more sophisticated analyses. This conservative
choice may even understate the degree to which our primary
predictors of interest affect the child’s earliest words, because

Roy et al.

our models fail to take into account the increasing diversification
of the child’s learning abilities over his or her second year (1, 2, 6).

Nevertheless, because our data came from a single child,
establishing the generality of these techniques will require more
evidence. One strength of the methods we present lies in their
applicability to other datasets via automated and semiautomated
techniques. With the growth of inexpensive computation and
increasingly precise speech recognition, which are hallmarks of
the era of “big data,” datasets that afford such in-depth analyses
will become increasingly feasible to collect. In addition to rep-
lication of our correlational analyses, a second important di-
rection for future work is to make tighter experimental tests of the
causal importance of contextual distinctiveness in word learning.

Theorists of language acquisition have long posited the im-
portance of rich activities and contexts for learning (2, 11, 12).
Our contribution here is to show how these ideas can be in-
stantiated using new tools and datasets. We hope this work spurs
further innovation aimed at capturing the nature of children’s
language learning at scale.

Materials and Methods

Video Processing. The spatial distinctiveness analysis first identifies regions of
pixels that exhibit motion, yielding a 487-dimensional binary motion vector
summarizing the active regions across all cameras. Characterizing motion
relative to regions, rather than individual pixels, is robust to pixel-level noise
and provides a low-dimensional representation of activity. Region-level ac-
tivity for any point in time is obtained by measuring pixel value changes in the
region for video frames within +5 s of the target time. This low-dimensional
representation is advantageous because it requires no human annotation
and is robust to noise while also capturing the locations of activity and a gist
of activity trajectories. More detail on these computations, including how
regions are defined, is provided in S/ Materials and Methods.

Extracting Spatial Distinctiveness. A word’s spatial distribution summarizes
where activity tended to occur when the word was uttered. This distribution
is computed from the condensed, region-activity representation of the recor-
ded video described above. First, for any word that the child learns, all child-
available caregiver utterances containing that word before the word birth
are identified. For each such exposure, the region activity vector is calculated
for the utterance time stamp, capturing the immediate situational context of
the child’s exposure to the target word, including the positions of the partic-
ipants and their trajectories if they are in motion. These vectors are then
summed and normalized to obtain the word's spatial distribution.

A word'’s spatial distribution may not be particularly revealing about its
link to location, because locations will generally have different overall ac-
tivity levels. Instead, word spatial distributions are compared with a baseline:
the background distribution of all caregiver language use. The background
distribution is computed in the same manner as word spatial distributions
except that the entire corpus is processed for all caregivers, and not just the
pre-AoFP utterances. To quantify spatial distinctiveness, we compute the
frequency-corrected KL-divergence between the word'’s spatial distribution
and the background. The raw KL-divergence (also known as relative en-
tropy) (29) between discrete distributions p and q is written as D(p || q) =
>ipilog %, and it is 0 if p=q; otherwise, it is positive. The caveat in using KL-
divergence directly for comparing distinctiveness between different words is
that it is a biased estimator and depends on the number of samples used in
estimating p and g. To address this issue, we use a word frequency-adjusted
KL-divergence measure, which is discussed below.

Extracting Temporal Distinctiveness. A word’s temporal distribution reflects
the time of day it is used at an hour-level granularity, from 0 (12:00-12:59
AM) to 23 (11:00-11:59 PM). As with the spatial distribution, for each word
the child learns, all child-available caregiver utterances containing that word
before AoFP are identified. For this set, the hour of the day is extracted from
each utterance time stamp and the values are used to estimate the pa-
rameters of a multinomial by accumulating the counts and normalizing. The
hour of day associated with a word can be viewed as a sample drawn from
the word's temporal distribution. As with spatial distinctiveness, we use
frequency-adjusted KL-divergence to compare a word'’s temporal distribu-
tion with a background distribution computed over all caregiver utterances
in the corpus. Larger KL-divergence values indicate more temporally distinct
word distributions, which tend to be more temporally grounded and used at
particular times of the day.
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Extracting Linguistic Distinctiveness. The child’s exposure to a word occurs in
the context of other words, which are naturally linked to one another
through topical and other relationships. A word’s embedding in recurring
topics of everyday speech may be helpful in decoding word meaning, and
the topics themselves may reflect activities that make up the child’s early
experience. To identify linguistic topics, we used LDA (28), a probabilistic
model over discrete data that is often applied to text. LDA begins with a
corpus of documents and returns a set of latent topics. Each topic is a dis-
tribution over words, and each document is viewed as a mixture of topics.
We used the computed topics to extract the topic distribution for each word
that the child produced. More details of LDA analysis are provided in S/
Materials and Methods. As with both of the previous two distinctiveness
measures, we used frequency-adjusted KL-divergence to compare a word’s
pre-AoFP topic distribution with the background distribution.

Bias Correction for Divergence Estimates. The distinctiveness measures quantify
how a word's use by caregivers differs from the overall background language use
across spatial, temporal, and linguistic contexts. Within a contextual modality,
for a particular word, we wish to compare the pre-AoFP caregiver word condi-
tional distribution against the baseline distribution, where the distributions are
modeled as multinomials. Although maximum likelihood estimates of multino-
mial parameters from count data are unbiased, KL-divergence estimates are not.
To address this issue, we empirically examined several approaches to quantifying
word distinctiveness. The raw KL-divergence value is strongly correlated with the
sample counts used in constructing the word multinomial distribution, as
expected, and generally follows a power law with log D(pw || ppg) ~ = alog ny,
where p,, is the estimated word distribution, n,, is the number of word samples
used, and pyq is the background distribution. The method we adopted was to
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use the residual log KL-divergence after regressing on log count. The distinc-
tiveness score is calculated as Score,, =log D(pw || Prg) — (a0 + a1 log ny, ), where
ap and aq are the regression model parameters. More details are provided in S/
Materials and Methods.

Variable Transformations. All predictor variables were standardized; fre-
quencies were log-transformed. More details are provided in SI Materials
and Methods.

Ethics, Privacy, and Data Accessibility. Data collection for this project was ap-
proved by the MIT Committee on the Use of Humans as Experimental Subjects.
Regular members of the household (family, baby-sitters, or close friends) pro-
vided written informed consent for use of the recordings for noncommercial
research purposes. Occasional visitors were notified of recording activity and
provided verbal consent; otherwise, recording was temporarily suspended or the
relevant data were deleted. Datasets such as ours open up new research op-
portunities but pose new and unknown ethical concerns for researchers. To
safeguard the privacy of the child and family being studied here, we are not able
to make available the full video and audio dataset. Nevertheless, we make
aggregate data about individual words available via the GitHub web-based
repository hosting service (github.com/bcroy/HSP_wordbirth), and we encour-
age interested researchers to investigate these data.

ACKNOWLEDGMENTS. Rupal Patel, Soroush Vosoughi, Michael Fleischman,
Rony Kubat, Stefanie Tellex, Alexia Salata, Karina Lundahl, and the Human
Speechome Project transcription team helped shape and support this research.
Walter Bender and the MIT Media Lab industrial consortium provided
funding for this research.

and Acquisition, eds Snow CE, Ferguson CA (Cambridge Univ Press, Cambridge, UK),
pp 109-149.

25. Yu C, Smith LB (2007) Rapid word learning under uncertainty via cross-situational
statistics. Psychol Sci 18(5):414-420.

26. Frank MC, Goodman ND, Tenenbaum JB (2009) Using speakers’ referential intentions
to model early cross-situational word learning. Psychol Sci 20(5):578-585.

27. Gleitman L (1990) The structural sources of verb meanings. Lang Acquis 1:3-55.

28. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res
3:993-1022.

29. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley, New York).

30. Miller GA (1955) Information Theory in Psychology: Problems and Methods (Free

Press, Glencoe, IL), Vol 2.
. Coltheart M (1981) The MRC psycholinguistic database. Q J Exp Psychol 33(4):
497-505.

32. Ferguson C, Snow C (1978) Talking to Children (Cambridge Univ Press, Cambridge, UK).

33. Kubat R, DeCamp P, Roy B, Roy D (2007) TotalRecall: Visualization and semi-automatic
annotation of very large audio-visual corpora. Proceedings of the 9th International
Conference on Multimodal Interfaces (ACM, New York).

34. Fiscus J (1998) Sclite scoring package, version 1.5. US National Institute of Standard
Technology (NIST). Available at www.nist.gov/itl/iad/mig/tools.cfm. Accessed August
30, 2015.

35. Jurafsky D, Martin JH, Kehler A (2000) Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition (MIT
Press, Cambridge, MA).

36. Reynolds DA, Quatieri TF, Dunn RB (2000) Speaker verification using adapted
gaussian mixture models. Digital Sig Proc 10(1):19-41.

37. Dromi E (1987) Early Lexical Development (Cambridge Univ Press, Cambridge, UK).

38. Gopnik A, Meltzoff A (1987) The development of categorization in the second year
and its relation to other cognitive and linguistic developments. Child Dev 58(6):
1523-1531.

39. McMurray B (2007) Defusing the childhood vocabulary explosion. Science
317(5838):631.

40. Roy BC (2013) The birth of a word. PhD thesis (Massachusetts Institute of Technology,

Cambridge, MA).

Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity

when there are unseen species in sample. Environ Ecol Stat 10(4):429-443.

42. Paninski L (2003) Estimation of entropy and mutual information. Neural Comput
15(6):1191-1253.

43. Zipf GK (1949) Human Behavior and the Principle of Least Effort (Addison-Wesley
Press, Cambridge, MA).

44. Piantadosi ST, Tily H, Gibson E (2011) Word lengths are optimized for efficient
communication. Proc Natl Acad Sci USA 108(9):3526-3529.

45. Weide R (1998) The Carnegie Mellon University Pronouncing Dictionary, release 0.7a.
Available at www.speech.cs.cmu.edu/cgi-bin/cmudict. Accessed August 30, 2015.

46. Bates E, et al. (1994) Developmental and stylistic variation in the composition of early
vocabulary. J Child Lang 21(1):85-123.

47. Caselli C, Casadio P, Bates E (1999) A comparison of the transition from first words to
grammar in English and Italian. J Child Lang 26(1):69-111.

48. Huber PJ (2011) Robust Statistics (Springer, Hoboken, NJ).

3

41.

Roy et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419773112/-/DCSupplemental/pnas.201419773SI.pdf?targetid=nameddest=STXT
http://github.com/bcroy/HSP_wordbirth
http://www.nist.gov/itl/iad/mig/tools.cfm
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
www.pnas.org/cgi/doi/10.1073/pnas.1419773112

L T

/

1\

=y

Supporting Information

Roy et al. 10.1073/pnas.1419773112

S| Materials and Methods

Data Collection. Data collection spanned the child’s first 3 y of life.
Audio and video recordings were captured from a custom re-
cording system in the child’s home, consisting of 11 cameras and
14 microphones embedded in the ceilings. This system was un-
obtrusive while achieving full spatial coverage. Cameras were
fitted with fisheye lenses to obtain a full view of each room, and
recordings were made at ~15 frames per second and 1-megapixel
resolution. Audio was recorded from boundary-layer micro-
phones, which were able to capture whispered speech from any
location by using the entire ceiling as a pickup. Audio was dig-
itized at 48 KHz and 16-bit sample resolution. Fig. S1 shows the
family’s home, a view into the living room, and some components
of the recording system. Altogether, roughly 90,000 h of video
and 120,000 h of audio were recorded and stored on servers
housed at the MIT Media Lab. Fig. S2 shows the full data-pro-
cessing system used in the current study.

Speech Transcription. The transcribed subset of the data spans the
period during which the child was aged 9-24 mo. Recordings are
included from 444 of the 488 d in this period (with exclusions
due to random subsampling in the transcription process). During
this time frame, an average of 10 h of multitrack audio was cap-
tured per day.

In general, the audio-video recording system ran all day and
captured substantial amounts of silence, nonspeech audio, and
adult speech during the child’s naps. To minimize the amount of
audio to transcribe and to focus on the speech relevant to the
child’s language learning, we identified a subset of multitrack
audio recordings for transcription using a manual preprocessing
step. By viewing the video, we first annotated the room the child
was in and whether he was awake or asleep across the day’s
recording. Annotation was performed using TotalRecall (33), a
tool we developed for browsing and annotating audio and video.
The resultant “where-is-baby” time series of annotations were
then used to exclude audio from rooms that were out of the
child’s hearing range. Furthermore, when the child was asleep,
audio from all rooms was excluded. We refer to the nonchild
speech contained in this filtered subset as child-available speech,
because it can reasonably be considered his linguistic input.

Even after filtering, fully manual transcription at this scale
would have been prohibitively time-consuming and expensive,
and fully automatic speech recognition would have been too
inaccurate. We developed a new speech transcription tool called
BlitzScribe (21) that combines automatic and manual processing.
BlitzScribe uses automatic audio-processing algorithms to scan
through the unstructured audio recordings to find speech and
create short, easily transcribable segments. The speech detection
algorithm splits audio into short 30-ms frames with a 15-ms
overlap, extracts spectral features from each frame, and applies
boosted decision trees to classify audio frames as speech or
nonspeech. A segmentation algorithm then groups classified frames
into short segments of speech and nonspeech.

Automatically identified speech segments were then loaded
into a simplified user interface that presented each segment as a
blank row in a list where the transcript could be typed. Audio
playback was controlled using the keyboard, obviating the need to
switch between the keyboard and mouse. Because the speech
segments were automatically detected, if nonspeech was in-
correctly labeled as speech (false-positive error), the transcriber
simply left the segment blank and it was automatically marked as
nonspeech. The system was tuned to favor false-positive over
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false-negative errors, because false-positive errors are easier
to correct.

The primary output of BlitzScribe was a sequence of speech
transcripts linked to the corresponding audio segments. Tran-
scribed speech segments were generally between 500 ms and 5 s
long, tuned to support ease of transcription as well as fine-grained
temporal resolution for each transcribed token. In addition to the
speech transcripts, the labeled speech and nonspeech segment
information could be used to retrain and improve the speech
detection algorithms.

Transcription quality was assessed on an ongoing basis by
assigning the same 15-min blocks of audio to multiple annotators
and evaluating interannotator agreement on these assignments.
Our system incorporated the US National Institute of Standards
and Technology sclite text alignment algorithm (34) to calculate
interannotator agreement. This measure was primarily used to
track transcriber performance and identify cases where tran-
scription conventions may have been misunderstood, which was
particularly important as nearly 70 annotators contributed to
this project over the course of 5 y. We reviewed cases where a
transcriber’s average pairwise interannotator agreement score
against all other annotators dropped below ~0.85. In some cases,
low reliability would lead to greater training for individual
transcribers or the establishment of transcription conventions for
particular words or phrases. Some assignments were inherently
more difficult, however, and had lower average interannotator
agreement scores due to background noise or overlapping speech,
for example.

Speaker Identification. Speaker identity was labeled using a fully
automatic system, although manual annotations were included
where available. The automatic system used acoustic features to
learn a decision boundary between the four primary speakers:
mother, father, nanny, and child. We used mel-frequency cepstral
coefficient (MFCC) features, MFCC deltas, and MFCC delta-
deltas, which are effective and commonly used in automatic speech-
processing algorithms (35). Audio samples in a speech segment
were partitioned into a set of 30-ms frames (with 15-ms overlap),
and acoustic features were extracted from each frame in the same
manner as for speech detection. The frames were classified by
comparing the likelihood of these observations under a trained
Gaussian mixture model for each speaker. Our system uses a
universal background model trained across different speakers as a
starting point for speaker-specific mixture models, similar to
other approaches (36).

For any speech segment, there are potentially multiple speaker
annotations produced either by different versions of the auto-
matic speaker identification system or by different human an-
notators. The logic for choosing the speaker annotation is always
to prefer human annotations to machine annotations, and then to
select the most recently produced annotation. Roughly 2.2%
(about 51,000) of the speech segments were human-annotated,
and the remaining segments were produced automatically. Al-
though manual speaker labeling is expensive in terms of human
effort, a small number of segments (~540) were annotated in-
dependently by multiple annotators to assess interannotator agree-
ment. Interannotator agreement on speaker labeling was high, at
roughly 96% agreement and x =0.94.

Each automatically generated speaker annotation also provides
a confidence score. We used a confidence threshold to tune the
tradeoff between data yield and accuracy. In the results reported
here, we used a confidence threshold that preserved at least 80%
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of the data for each speaker and achieved accuracy in excess
of 90%. Details on the relationship between the confidence
threshold, accuracy, and yield are provided in Fig. S3. Note that,
as described below, AoFP by the child for each word was man-
ually verified to avoid faulty speaker identification leading to
errors in this measure.

Child’s Productive Vocabulary

The primary outcome variable for our study was the child’s AoFP
for individual words. Finding these first productions in roughly 8
million tokens of child and adult speech is challenging because
the subset of child speech alone consists of hundreds of hours of
audio, which is too much to listen to manually. On the other
hand, the naive strategy of simply searching the transcripts for
the child’s first production of a word is also problematic; small
annotation error rates for transcripts and speaker identification
labels can result in many false-positive errors, which could er-
roneously lead to attributing adult-produced words to the child.
To narrow down candidate words, we followed a two-step pro-
cess, first filtering annotation errors and then conducting manual
review of the filtered set of words.

There are two primary annotation error types that might lead to
incorrect identification of a word’s first production by the child:
errors in transcription and errors in speaker identification.
Transcription errors are less common, and because speech
transcripts are human-generated, further human review of a
speech segment may not yield a better or more authoritative
transcript. In contrast, most speaker identification annotations
are produced by an automatic system with a higher error rate,
and speaker identity is relatively easy to discern for a human
annotator. We addressed these issues through a combination
of automatic and manual approaches. An automatic inference
procedure identified candidate words and word birth dates for
the child’s vocabulary from the large amount of observed data,
and a software tool was developed to enable rapid manual review
and annotation.

Automatically Identifying Candidate Word Births. The automatic
inference procedure was the first step. We began by modeling the
speaker label associated with a particular token in an utterance as
a noisy observation. There are two primary error types that could
result from the speaker identification system with respect to
identifying the child’s true vocabulary. A false-negative result is a
case in which a child’s true production of a word is mislabeled as
nonchild speech. Although a single true production of a partic-
ular word may be mislabeled as nonchild speech, the chance that
all such true productions are mislabeled quickly decreases to-
ward zero with each production. For this reason, and because
scouring all nonchild-labeled speech for false-negative results
would be extremely costly, we do not directly address false-
negative errors. However, we do address false-positive errors, in
which a nonchild word production is mislabeled as child speech.
False-positive errors can lead to attributing words to the child’s
productive vocabulary erroneously or to identifying AoFP earlier
than the child’s first production.

To infer automatically whether and when the child first pro-
duced a word in the presence of false-positive errors, we use an
hypothesis testing procedure to compare a model of observed
word occurrence counts parameterized by word birth month to
a null hypothesis model. Under the null hypothesis, the child
never produced the word and all observed occurrences are false-
positive errors. In the parameterized model, all observed child
productions in the preacquisition regime are false-positive errors,
whereas those observed child productions in the postacquisition
regime are a combination of false-positive errors and true-positive
counts. A likelihood ratio test can be used both to test whether the
child acquired the word and to determine what the most likely
word birth month would be. Fig. S4 shows the occurrence counts
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of the word “star” by month. Although there are child-labeled
occurrences of this word for every month (shown in red), the
likelihood ratio test procedure identifies month 16 as the mostly
likely word birth month and, furthermore, that the likelihood of
the observed data under this model is significantly higher than
under the null model (P < 0.05).

With this method, we proceeded as follows. First, only child
utterances with a speaker identification confidence at or greater
than 0.4 were considered. This threshold preserved 90% of the
child’s true utterances at a false-positive rate of about 0.05. All
words in these utterances were then tokenized and normalized
via manually generated mapping, reducing alternate spellings,
plurals, gerunds, and some common misspellings to a canonical
form, resulting in 6,064 word types. Next, words that were ut-
tered two or fewer times by the child and five or fewer times
overall were removed. Without a sufficient number of examples
of the child using a word, even manual review may be unreliable.
A similar criterion for child speech was used by Dromi (37),
which required three consistent vocalizations in various contexts
for a word to be admitted into the lexicon. We also noted that
the long tail of rare words often contained misspellings of more
common words. These thresholds were chosen to be permissive
and yielded a set of 2,197 candidate words, which is many more
than expected for a 2-y-old (15). Reducing the thresholds further
would have required additional human review later in the anal-
ysis pipeline but with little expected change to the final set of
word births. After filtering, we applied the hypothesis testing
procedure described above to each of these words, yielding a
candidate set of 1,375 word births.

Manual Word Birth Review and Annotation. The final vocabulary
growth time line used for our analyses was manually reviewed and
verified using the “Word Birth Browser,” a tool we designed
specifically for this purpose. This tool loads a set of candidate
words and their AoFP values, and allows the user to play back
the corresponding audio segment. The user is also presented
with all other utterances containing the target word, which can
be sorted by date and speaker identity so that prior or sub-
sequent candidate occurrences may also be reviewed. Finally,
because interpreting the speech in an isolated utterance can be
challenging, a contextual window with all utterances in the sur-
rounding few minutes is also available and can be used for
playback. This tool is shown in Fig. S5. Several members of our
transcription team helped to annotate word births using this tool.
After several weeks of effort, 679 words and their AoFP dates
were identified and used in the results reported in the main text.

We believe this final set of words is quite accurate, although our
results may still be biased in a number of ways. First, we had no
method for finding false-negative errors, so we likely understate
the child’s vocabulary, especially for words learned later (for
which there are fewer opportunities for detection). Second, low-
frequency words may be more likely to be detected later than
their actual first production, because individual instances of
production might be missed.

Tracking Lexical and Syntactic Development. The child’s productive
vocabulary grew slowly at first, consisting of about 10-15 words
by 12 mo of age, and then rapidly accelerated over the next 6 mo.
Although the child’s vocabulary continued to grow, the rate of
growth decreased substantially after 18 mo of age. Fig. S6A4
depicts the number of new words added to the child’s productive
vocabulary over time, illustrating the dynamic nature of the child’s
lexical growth.

Researchers have noted the rapid growth of many children’s
early vocabularies, which is sometimes referred to as a “vocab-
ulary spurt.” Some have suggested this vocabulary spurt is a
byproduct of a new insight children gain about categories (38),
and others suggest that it is a mathematical consequence of the
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natural distribution of word difficulty (39). Furthermore, some
children’s lexical growth rate may not accelerate but exhibit
greater development in other areas, such as combinatorial pro-
ductivity (2). Less commonly discussed is the decline we observe in
growth rate; it has been suggested this decline may signify a transition
into a different learning “stage” (37) or a statistical sampling artifact
(1), although the scale and density of the Human Speechome
Project corpus mitigates sampling issues. Fig. S6B shows the
MLU (in words) of the child over time, an indicator of the child’s
grammatical and general productive language development. The
transition from single-word utterances to multiword productions
seems to begin around 18 mo of age. Notably, the decline in
lexical acquisition rate also occurs around this time. This pattern
of decreased productive lexical acquisition rate, coinciding with
an increase in combinatorial speech, aligns with the findings by
Dromi (37), who argued for distinct learning stages. Certainly,
grammatical combinatorial speech requires a sufficiently (and
syntactically) rich productive vocabulary, supporting a de-
pendence of MLU on vocabulary size. However, it is less clear
why the onset of combinatorial speech should coincide with a
decrease in the lexical acquisition rate. Although more research
is needed, Fig. S6 illustrates that there are multiple strands of
communicative development underway that may share important
interdependencies.

Fig. S7 shows the overall breakdown of utterances and tokens
by speaker, after removing utterances consisting only of nonword
vocalizations. The child’s role as a communicative participant
clearly increases with time. The pattern of engagement roughly
tracks vocabulary size and shows a substantial increase around
months 17 and 18, roughly tracking the rapid increase in vo-
cabulary size in these months.

Methods for Distinctiveness Measures

Video Processing. Spatial distinctiveness was calculated across
spatial regions rather than at the pixel level, which yielded a lower
dimensional spatial representation that also provided robustness
to pixel noise. To obtain regions that faithfully captured the spa-
tial and activity structures of interest, the raw 960 x 960-pixel
video from each camera was first down-sampled to 120 x 120
pixels. Background subtraction was applied to each down-
sampled frame to identify “active” pixels that differed significantly
from their average “background” value, resulting in streams of
binary video. For each stream, pairs of pixels with highly corre-
lated values and within a short spatial distance of each other
were clustered together, yielding a total of 487 regions across
nine of the 11 cameras (the master bedroom and bathroom were
again omitted from this analysis).

Region activities for a point in time were computed as follows.
First, background subtraction was applied to all reduced-reso-
lution video frames within a temporal window of +5 s of the
target time. For each region, we calculated the fraction of active
pixels in the region for all frames in the temporal window and
then thresholded. In this way, the activity at any point in time
was summarized as a 487-dimensional binary vector indicating
the active regions.

LDA Modeling. We partitioned the entire corpus of speech tran-
scripts into a set of documents by splitting the 9- to 24-mo time
range into a nonoverlapping sequence of 10-min windows, and
grouped all transcripts that occurred in a 10-min window together
into a document. This process resulted in ~ 18,700 documents,
which we referred to as “episodes.” We selected 10-min windows
through some experimentation, but with an aim toward choosing
a time scale that would capture enough natural speech to include
one or a small number of identifiable, discrete activities. Shorter
(5 min) and longer (15 min) episodes also yielded similar topics
and regression results. Note that in the extreme, very short docu-
ments consisting of a single word provide no other words of
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linguistic context. On the other hand, very long documents (e.g.,
at the day level) would not capture how clusters of co-occurring
words and activities shift and change over the course of a day.

In the standard LDA formulation, documents are treated as an
unordered set of words. Each document was first processed to
identify a common vocabulary shared across all documents. As is
common in probabilistic text modeling, where parameters must be
estimated for every word, we reduced the vocabulary size by first
removing a small set of “stop words” that were expected to
contribute little topic information (e.g., and, “or,” “not”). We
then applied a stemming algorithm to combine morphological
variants into a single word type (e.g., mapping “runs,” “running,”
and “run” to a common form). Finally, we removed words that
occurred fewer than six times or occurred in fewer than five
documents. The resultant vocabulary consisted of 6,731 words.
Note that although these thresholds better condition the input
data for LDA modeling (because removing rare words reduces
the number of parameters to estimate), the downstream dis-
tinctiveness analysis is not particularly sensitive to these thresh-
olds. In general, a rare word is less likely to have an impact on a
document’s topic distribution, and the distinctiveness measure
derives from the topic distributions of pre-AoFP documents con-
taining the target word.

We applied LDA to this corpus. LDA takes as input a target
number of topics to identify; choosing the appropriate number
requires some intuition and experimentation. We settled on 25
topics after a number of early experiments, largely because the
resulting topics were fairly coherent and interpretable (but note
that distinctiveness results were also fairly robust to different
numbers of topics). Some of the topics that emerged seemed to
correspond to activities such as mealtime, book reading, bath
time, and playing with toys. In addition, 25 topics corresponded
approximately to the number of everyday activities that human
annotators noted in a separate annotation effort of a subset of the
corpus [more details on this manual activity annotation and
analysis are provided elsewhere (40)].

As with spatial and temporal context, we computed a topic
distribution for each word based on caregiver word use before
AoFP. To do so, we identified all 10-min episodes (documents)
before AoFP. We apportioned caregiver uses of the target word
during the episode to topics according to the episode’s topic
mixture and then summed and normalized to obtain the topic
distribution for the word.

A topic that is strongly associated with a word will thus have a
high conditional probability Pr(topic;|w), but as with spatial and
temporal context, the topic conditional probability distribution
must be compared with a background distribution to quantify its
distinctiveness. The background topic distribution was computed
in the same manner as the per-word topic distribution, except by
summing over all episodes in the corpus. It is the weighted av-
erage of all of the episode topic distributions, weighted by the
number of words in each episode. Linguistic topic distinctiveness
is defined as the frequency-adjusted KL-divergence between the
word conditional topic distribution and the background topic
distribution.

Bias Correction for KL-Divergence Estimates. The distinctiveness
measures compare a word’s spatial, temporal, or topical distri-
bution against the “background” distribution of language use in
the modality. These distributions are modeled as multinomials
and estimated from observed data. Although the multinomial
parameter estimates are unbiased, the KL-divergence values for
these estimated distributions are not; instead, they depend on
the number of samples used in estimating the underlying distri-
butions. With fewer samples, the KL-divergence estimates are
biased upward, decreasing toward the true KL-divergence as the
number of samples increases.
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This bias is problematic when comparing KL-divergence values
between words whose distributions are derived from different
numbers of observations. Because the number of observations for
a word depends on both its frequency and AoFP, the raw KL-
divergence measure will reflect both true distributional differ-
ences in use patterns and frequency-derived bias. Therefore, we
explored several bias correction strategies to characterize word
distinctiveness properly.

Miller (30) investigated the bias in estimates of entropy, a
closely related quantity. He showed that the highest order bias
terms depend on k, the number of bins in the multinomial, and #,
the number of samples used in estimating the multinomial. The
bias decreases toward zero following a 1 relationship. It is
straightforward to show that the KL-divergence bias follows the
same }L falloff toward zero. [This bias can be seen by expressing
KL-divergence as the cross-entropy minus the entropy, or
D(p || q)=H(p,q) —H(p), and recognizing that the cross-entropy
estimator is unbiased for multinomial distributions.] Miller (30)
suggests a bias correction that can be applied when # is not too
small (i.e., when n > k); unfortunately, this condition is not valid
for many words, particularly for spatial distinctiveness, where the
number of multinomial bins (i.e., regions) is large.

Chao and Shen (41) present another approach to entropy bias
correction for characterizing species diversity from sample
counts. Here, the number of species corresponds to the number of
multinomial bins, which is unknown. In our scenario, the number
of bins is known, although in the case of spatial distinctiveness,
some regions may never be active for the set of learned words. A
thorough discussion of the bias in information theoretic esti-
mators is presented by Paninski (42).

With these issues in mind, we empirically examined several
approaches to quantifying word distinctiveness. The raw KL-
divergence value is strongly correlated with the sample counts used in
constructing the word multinomial distribution, as expected, and
generally follows a power law with logD(p,, || py) ~ —alogn,,
where p,, is the estimated word distribution, n,, is the number of
word samples used, and py, is the background distribution. Applying
the corrections of Miller (30) and Chao-Shen (41) also generally
yielded values negatively correlated with count. This correlation
may reflect a real property of word use that more distinctive words
are less frequent, but in combined regression models, collinearity
with other variables is a concern as a potential confound.

Therefore, we took a conservative approach and decided to
remove the effect of count completely in defining distinctiveness:
We used the residual log KL-divergence value after regressing on
log count. Although this residualization step may diminish the
predictive power of KL-divergence, particularly if log sample
count correlates with AoFP (although it generally does not), it
effectively reduces collinearity with other predictors. Intuitively,
the regression line captures the average log KL-divergence by log
count, and the residual for a particular word reflects how much
more or less contextually distinctive the word is relative to others
with the same sample count.

Supporting Data and Analytical Details

In this section, we give additional details on selected analyses; full
code to reproduce all reported analyses is available in the linked
repository. For interested readers who wish to explore the
raw data linked in our GitHub repository (github.com/bcroy/
HSP_wordbirth), the measures (and variable names) are as fol-
lows: word frequency (sln.freq.pre), MLU (s.uttlen.pre), number
of phonemes (s.cmu.phon), spatial distinctiveness (srl.sp.KL),
temporal distinctiveness (srl.temp.KL), and linguistic distinctive-
ness (srl.topic.KL). The variables are named according to the
following conventions: standardized variables are prefixed by s,
normalized variables are prefixed by n, and logged variables are
prefixed by 1. The distinctiveness measures are all residualized,
denoted with the prefix r.

Roy et al. www.pnas.org/cgi/content/short/1419773112

Correlational Structure Between Variables. Correlations between
variables are shown in Fig. S8. The baseline predictors (MLU,
number of phonemes, and frequency) were relatively un-
correlated, with one exception. Number of phonemes is a mea-
sure of word length, which has been known since Zipf (43) to
be correlated with word frequency [perhaps as a consequence
of the evolution of vocabulary to facilitate efficient communi-
cation (44)].

In contrast, spatial, temporal, and topical distinctiveness was
largely uncorrelated with the baseline predictors. We note that
correlations between log frequency and the distinctiveness pre-
dictors are close to zero but nonzero, despite the fact that the
distinctiveness predictors are frequency-controlled, as described
above. This effect arises because the counts on which the dis-
tinctiveness predictors are residualized are not the same as those
counts used to estimate word frequency. There is some small
variance in the counts used for each of the distinctiveness pre-
dictors relative to frequency, due to both missing video data for a
very small subset of transcripts and minor differences in data
treatment across approaches (e.g., how multiple uses of a word
within the same time window affect distinctiveness distributions).

Finally, we note that there is a high degree of correlation
between the distinctiveness predictors (shown by the red dashed
line in Fig. S8). For this reason, in the main text, we report
models using only one of the predictors, although a model that
includes all predictors is shown below.

Differences Between Distinctiveness Variables. Although the pri-
mary focus in our analyses is the commonality between the three
distinctiveness predictors, we note that they do differ for certain
words. We calculated an index of differences between the dis-
tinctiveness predictors by calculating the summed squared dif-
ference between each prediction and the mean of all three. Table
S1 shows the top 10 words on this deviation measure. The results
are clearly interpretable. Words like “diaper,” “change,” and
“poop” are very spatially distinctive but are temporally very
diffuse, probably because their associated activity is spatially
localized (the changing table) but happens at different times
throughout the day. In contrast, the word “breakfast” is tem-
porally very distinct but is said throughout the house, probably
because the child is being called to eat breakfast at a particular
time each morning. These results support the idea that these
predictors reveal aspects of the activity structure in which the
words are used.

Distinctiveness of Speaker Context. Thanks to the suggestion of the
editor and one of the reviewers, we also examined the role of
caregiver presence during word use as another measure of a
word’s contextual distinctiveness. We defined a new variable to
capture caregiver context in the same manner as the other dis-
tinctiveness measures by first computing a word’s pre-AoFP
caregiver use distribution (which served as a proxy for caregiver
presence, because only speech in the child’s vicinity was tran-
scribed.) Thus, words used more frequently in the child’s pres-
ence by a particular caregiver would have a corresponding peak
in the word’s speaker distribution. As with the other distinc-
tiveness predictors, we then defined the speaker context dis-
tinctiveness as the residualized KL-divergence of the word’s
speaker distribution relative to the baseline speaker distribution.

By itself, this variable is predictive of AoFP, but when added to
the baseline model, it is only significant in predicting the AoFP for
nouns and is still weaker than the other three distinctiveness
predictors. However, the relationship is directionally the same,
indicating that words (or at least nouns) that are more strongly
tied to particular caregivers tend to be produced earlier by the
child. We tentatively view this analysis as supportive of our hy-
pothesis that linguistic exposure in stable activities, as reflected
by distinctive spatial, temporal, linguistic, and caregiver presence
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measures, contributes to earlier productive acquisition. Table S7
summarizes the relevant distinctiveness values for the combined
speaker distinctiveness model, which can be compared with Fig. 1.

Predictor Variables. We used a number of variable transformations
in our analysis, as described below. All regression coefficients
were standardized (variables prefixed by s) by subtracting the
mean and dividing by the SD. This step was taken to create
coefficient values whose magnitudes were interpretable as number of
days of AoFP per SD of change on a predictor; standardization does
not affect the reliability estimates of either individual coefficients
or the model as a whole.

Word frequency. We examined a number of ways of including word
frequency into our models. From our transcripts, we extracted a
count of the number of times a word occurred in the caregivers’
speech before AoFP. This count represents a biased estimate of
frequency before AoFP, however, because our transcripts omit
the first 9 mo of the child’s life; for a word learned very early, this
count would be artificially low. To remedy this issue, we nor-
malized frequency to a frequency-per-day measure by dividing by
the approximate number of days before AoFP for which we had
transcripts (variables prefixed by n, denoting normalized). Then,
because word frequencies are Zipfian in their distribution (43),
we took the natural logarithm of frequency per day (variables
prefixed by 1, denoting logged). The final predictor we use was
thus the standardized, logged, normalized word frequency during
the period before AoFP (sln.freq.pre). (We note that this set of
variable transformations maximizes the correlation between
frequency and age of acquisition relative to other variants.)
MLU. Because morphological analyses were not available for our
data, MLU was calculated in words for each sentence in which a
target word occurred, again using only those utterances before
AoFP. These means were then standardized for the final analysis
(s.uttlen.pre).

Number of phonemes. We extracted the number of phonemes in
each word by identifying matches in the Carnegie Mellon Uni-
versity Pronouncing Dictionary (45). There were 13 words for
which no match was found. We then standardized length in
phonemes for the final analysis (s.cmu.phon).

Distinctiveness predictors. The three distinctiveness predictors were
also log-transformed, residualized (as noted above), and stan-
dardized.

Word category. We first categorized words using the standard
MacArthur-Bates Communicative Development Inventory (CDI)
categories (small.cat) (15). We then further merged these categories
to create syntactic categories, using the category merging scheme of
Bates (46) (also ref. 47). Note that this conservative scheme ex-
cludes all words marked as “Games and Social Routines” from the
nominals category because they may not be true nominals but, in-
stead, words that are used in particular restricted routines.

Roy et al. www.pnas.org/cgi/content/short/1419773112

Regression Models. We note that although we used ordinary least
squares regression, all results are qualitatively unchanged via the
use of robust regression (48). Results from these analyses are available
through our interactive visualization application (wordbirths.
stanford.edu/).

In the tables below, we give the full details of the four primary
regression models pictured in Fig. 1. Models for subsets of the
data can be recomputed easily using the code available in the
linked repository. Tables S2-S5 give the baseline model, fol-
lowed by the three individual distinctiveness predictor models.

Table S6 shows a model including all three distinctiveness
predictors. In this model, spatial distinctiveness is assigned the
largest predictive weight, whereas temporal distinctiveness re-
mains reliable as well (although considerably smaller than when
it is entered separately). Linguistic distinctiveness is not signifi-
cant in this model, however, suggesting that it did not explain
unique variance in AoFP over and above the other distinctive-
ness predictors. This relatively smaller effect of linguistic dis-
tinctiveness is consistent with both its smaller coefficient value in
the regression when including it alone (Table S5) and its sub-
stantially reduced predictive power when controlling for image-
ability (discussed below).

Control Analyses for Other Psycholinguistic Variables. To test whether
our distinctiveness predictors corresponded to other psycholin-
guistic variables, we merged the Medical Research Council (MRC)
psycholinguistic norms for familiarity, imageability, and concreteness
with the child’s vocabulary (31). There were 430 words in common
between these two sets. Imageability and concreteness were almost
indistinguishable (r=0.93), and neither was particularly correlated
with any distinctiveness predictor (g = 0.35, 7 =0.22), although
these correlations were all very reliable, given the large number of
words over which they were computed. Familiarity was almost
uncorrelated with the distinctiveness predictors (Fypaiar = —0.05,
Tiemporal = —0.10, Tjinguisiic = —0.08), although it was highly correlated
with our frequency measure (r=0.55).

We next examined whether regression coefficients were altered
by controlling for variables in the MRC database (within the
subset of words for which these variables were available). In-
triguingly, the magnitude of spatial distinctiveness for this subset
decreased relatively little when controlling for imageability
(—25.71 d/SD to —20.77 d/SD), whereas the magnitude of tem-
poral distinctiveness decreased somewhat more (—17.65 d/SD to
—12.25 d/SD), and the magnitude of linguistic distinctiveness
decreased the most (—13.21 d/SD to —6.47 d/SD). Importantly,
in all three models, the distinctiveness predictor was still reliable
even when controlling for imageability. The same pattern of
results was observed for concreteness.
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Fig. S1. Site of the Human Speechome Project, where all recording took place. Also shown is the ceiling-mounted camera with an open privacy shutter, the
microphone, the recording controller, and a view into the living room.
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Fig. S2. Schematic of data collection and processing for our dataset, leading to our outcome (blue) and predictor (red) variables. (A) Audio recordings are
filtered automatically for speech and speaker identity and then transcribed. Transcripts are used for the identification of the child’s productions, extraction of
frequency, MLU, and temporal distinctiveness predictors, as well as for clustering via topic models (LDA) to extract the linguistic distinctiveness measure.
(B) Video recordings are processed via motion-based clustering. Region-of-motion distributions for each word are then compared with a base motion dis-
tribution for all linguistic events, yielding the spatial distinctiveness predictor.
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transcription
e vy

are you a boy or a girl

yeah you are a
big boy right
big boy

ff, you're a big
cute boy

what are you
you're a big
good

boy

what is that
bicycles

did you like that
did you like that

wow you're gonna have a jj wit..

bicycles
yeah

pillow yeah; yeah a pillow with..

it's gonna be motorcycles
motorcycles

yeah

motor

ow my knee

ff

ff mommy
ff

ff; what

no

ff; come on
oh

il

ff

door
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Fig. S5. Screen shot of the Word Birth Browser tool showing the main window (Left) and context window (Right). In the main window, the left pane is used to
select a word to review and the right pane presents all utterances containing the target word, which can be sorted by different attributes. The context window

presents the utterances that surround the selected utterance within a temporal window of 1-2 min.

Roy et al. www.pnas.org/cgi/content/short/1419773112

9 of 12


www.pnas.org/cgi/content/short/1419773112

L T

z

D\

9

Child MLU
Word births by month 3-
150 -

2 2,
=
e}
-gmof ;
s .
. I I
zZ

0- __—--l ..__ 0-

1‘2 ‘8 2‘1 2‘4

15 1 9 12 15 18 21 24
Child age (months) Child age (months)

(a) (b)
Fig. $6. Child’s word birth count (A) and MLU (B) by month (95% confidence interval shaded). The child’s total vocabulary is increasing across the full 9- to

24-mo age range, but the growth rate exhibits an increase up to 18 mo of age, followed by a decline. However, MLU remains relatively flat (at ~ 1) until 18 mo.
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Fig. S7. Overall breakdown of spoken language over time for each speaker. The proportion of word tokens produced (Top) and the proportion of transcripts
produced (Bottom) are shown.
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Fig. S8. Pearson (A) and Spearman (B) correlation (corr.) coefficients between all pairs of predictors. Frequency and number of phonemes are most strongly
correlated, an indication that longer words tend to be used less frequently [first noted by Zipf (43)]. The red box shows correlations for distinctiveness pre-
dictors. freq, frequency; utt, utterance. ***P <0.001; **P <0.01; *P <0.05.

Table S1. Top 10 words on which the three distinctiveness
predictors differ in their predictions

Rank Word Deviation Spatial Linguistic ~ Temporal
1 Diaper 14.63 4.03 0.94 -1.36
2 Chase 8.07 -1.00 2.01 -1.80
3 Change 7.10 2.96 0.16 -0.62
4 Light 7.08 3.49 0.28 0.19
5 Breakfast 6.41 -1.06 -1.30 1.92
6 Living 4.90 -1.00 1.74 -0.94
7 Door 4.85 2.08 -0.59 -0.63
8 Poop 4.84 2.46 0.17 -0.51
9 Medicine 4.64 -0.63 -0.91 1.86
10 Downstairs 4.63 1.89 -0.84 —-0.65

Table S2. Baseline regression model

BN AS PN AN D

Variable Estimate SE t value Pr(>|t|)
(Intercept) 555.150 2.353 235.927 <0.001
s.cmu.phon 15.710 2.629 5.977 <0.001
sin.freq.pre —6.657 2.647 -2.515 0.012
s.uttlen.pre 16.341 2.430 6.725 <0.001

Pr, probability.

Table S3. Regression model, including spatial distinctiveness

predictor

Variable Estimate SE t value Pr(>|t|)
(Intercept) 554.131 2.210 250.757 <0.001
s.cmu.phon 14.936 2.504 5.964 <0.001
sin.freq.pre -3.079 2.691 -1.144 0.253
s.uttlen.pre 16.313 2.670 6.111 <0.001
srl.sp.KL —22.053 2.258 -9.767 <0.001
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Table S4. Regression model, including temporal distinctiveness

predictor

Variable Estimate SE t value Pr(>|t|)
(Intercept) 555.015 2.239 247.842 <0.001
s.cmu.phon 14.942 2.503 5.969 <0.001
sin.freq.pre -5.874 2.531 -2.321 0.021
s.uttlen.pre 11.802 2.406 4.905 <0.001
srl.temp.KL -19.330 2.297 -8.414 <0.001

Table S5. Regression model, including linguistic distinctiveness

predictor

Variable Estimate SE t value Pr(>|t|)
(Intercept) 553.592 2.313 239.343 <0.001
s.cmu.phon 15.009 2.608 5.754 <0.001
sin.freq.pre -5.405 2.788 -1.939 0.053
s.uttlen.pre 18.483 2.629 7.031 <0.001
srl.topic.KL —14.267 2.350 —-6.072 <0.001
Table S6. Regression model, including all distinctiveness
predictors

Variable Estimate SE t value Pr(>|t|)
(Intercept) 553.134 2.218 249.394 <0.001
s.cmu.phon 14.281 2.517 5.673 <0.001
sin.freq.pre -4.519 2.772 -1.630 0.104
s.uttlen.pre 14.814 2.731 5.424 <0.001
srl.topic.KL -1.252 2.746 —0.456 0.649
srl.temp.KL -9.033 2.833 -3.189 0.002
srl.sp.KL -15.997 2.883 —5.549 <0.001

Table S7. Baseline (number of phonemes, MLU, and frequency) + speaker distinctiveness

models for each word class

Word class Speaker distinctiveness SE t value Pr(>|t|)
All (N=678) —-4.573 2.396 -1.909 0.057
Nouns (N =379) -7.818 2.930 —2.668 0.008
Predicates (N=201) 5.884 3.896 1.510 0.133
Closed class (N =64) 2.542 8.383 0.303 0.763
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