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Abstract

This article investigates whether, and how, an artificial intelligence (AI) system can be
said to use visual, imagery-based representations in a way that is analogous to the use of
visual mental imagery by people. In particular, this article aims to answer two fundamental
questions about imagery-based AI systems. First, what might visual imagery look like in an
AI system, in terms of the internal representations used by the system to store and reason
about knowledge? Second, what kinds of intelligent tasks would an imagery-based AI system
be able to accomplish? The first question is answered by providing a working definition of
what constitutes an imagery-based knowledge representation, and the second question is
answered through a literature survey of imagery-based AI systems that have been developed
over the past several decades of AI research, spanning task domains of: 1) template-based
visual search; 2) spatial and diagrammatic reasoning; 3) geometric analogies and matrix
reasoning; 4) naive physics; and 5) commonsense reasoning for question answering. This
article concludes by discussing three important open research questions in the study of visual-
imagery-based AI systems—on evaluating system performance, learning imagery operators,
and representing abstract concepts—and their implications for understanding human visual
mental imagery.

Keywords: knowledge representation; analogical representations; depictive vs. descrip-
tive; iconic vs. propositional; modal vs. amodal.
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1 Introduction

“I’ve seen things you people wouldn’t believe. Attack ships on fire off the shoulder

of Orion. I watched C-beams glitter in the dark near the Tannhäuser Gate. All

those moments will be lost in time, like tears in rain.”

Roy Batty, a replicant (Blade Runner film)

What is the inner, “mental” life of an artificial intelligence (AI) system? At its

most basic level, it is true that information in a digital computer is just ones

and zeros, but that is a bit like saying that information in the human mind

is all just spiking neurons. Humans employ a rich variety of mental represen-

tations, ranging from sensory impressions to linguistic symbols, that each can

be studied at many different levels of abstraction, e.g., as in Marr’s levels of

analysis (Marr 1982). And, while some general, low-level principles of operation

are shared across different neurons, there is also extensive biological and devel-

opmental specialization within the integrated brain-body system that produces

very different types of mental representations for different tasks, situations, and

sensory modalities.

This article investigates whether, and how, an AI system can be said to use visual,

imagery-based knowledge representations in a way that is analogous to the use

of visual mental imagery by people—i.e., using visual, image-like representations

to store knowledge, and image-based operations like translation, rotation, and

composition to reason about that knowledge in some useful way.

While the existence of visual mental imagery in human cognition was vigorously

debated for much of the late 20th century (aptly named “The Imagery Debate”),

many convergent findings in neuroscience now support the idea that visual mental

imagery is a genuine and useful form of mental representation in humans (Pearson

and Kosslyn 2015). Visual mental images are represented in many of the same

retinotopic brain regions that are responsible for visual perception, with the key

difference that mental images involve neural activations that are not directly

tied to concurrent perceptual inputs (Kosslyn, Thompson, et al. 1995; Slotnick,
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Thompson, and Kosslyn 2005). In addition, the neural activity associated with

visual mental imagery has been found to play a functional role: if this neural

activity is artificially suppressed, then a person’s performance on certain tasks

will decrease (Kosslyn, Pascual-Leone, et al. 1999).

A person’s use of visual mental imagery is also associated with certain behavioral

characteristics whose study formed much of the early seminal work on this topic

in psychology. For example, performing mental rotations of an arbitrary image

takes an amount of time that is proportional to the angle through which the

rotation is applied, as demonstrated by studies of the now-classic mental rotation

task (Shepard and Metzler 1971).

In addition, numerous narrative, often introspective accounts of human intelli-

gence have identified visual mental imagery as playing a crucial role in many

different task domains, including medical surgery (Luursema, Verwey, and Burie

2012), mathematics (Giaquinto 2007), engineering design (Ferguson 1994), com-

puter programming (Petre and Blackwell 1999), creativity (Miller 2012), and

scientific discovery (Nersessian 2008). Temple Grandin, a professor of animal

science who also happens to be on the autism spectrum, identifies her tendency

to “think in pictures” as a contributor both to her strengths as a designer of

complex equipment for the livestock industry as well as to her weaknesses in un-

derstanding abstract concepts and communicating with other people (Grandin

2008). Individuals seem to vary in their abilities to use visual mental imagery

from the strong abilities often observed in autism (Kunda and Goel 2011) to the

apparent lack of imagery ability recently characterized as aphantasia (Zeman,

Dewar, and Della Sala 2015).

However, despite the breadth of studies from neuroscience, psychology, and other

disciplines, much is still unknown about the cognitive machinery that drives

visual mental imagery in humans, such as how mental images are stored in and

retrieved from long term memory, how they are manipulated, and how they

support intelligent behavior in various real-world task domains. As with research
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on other aspects of cognition, the study of visual mental imagery is challenging

because mental representations and the cognitive processes that use them are

not directly observable. We can use neuroimaging to study what happens in the

brain, and we can measure behavior to study what happens externally, but the

nature of the mental representations themselves can only be inferred indirectly,

through these other approaches.

In contrast, the knowledge representations used by an AI system are completely

observable. One has only to look up the system’s code and inputs, and inspect the

state of the system during its operation, to know exactly what knowledge is rep-

resented where, and how each piece of knowledge is being used at every moment.

For this reason, AI systems are excellent vehicles for conducting scientific, em-

pirical investigations into the relationships between knowledge representations,

including the reasoning processes that use them, and intelligent behavior.

In their 1976 Turing Award lecture, AI pioneers Newell and Simon observed that,

while computers do play a valuable role as applied tools in people’s lives, they

also play a valuable role for science and society as objects of empirical inquiry—

things that we design, build, and study in order to learn something fundamental

about the universe that we live in (Newell and Simon 1976, p. 114):

Each new program that is built is an experiment. It poses a question to

nature, and its behavior offers clues to an answer. Neither machines nor

programs are black boxes; they are artifacts that have been designed,

both hardware and software, and we can open them up and look inside.

We can relate their structure to their behavior and draw many lessons

from a single experiment.

Of course, if we studied computers merely to learn more about computers, then

the activity would have only so much appeal, but what computers allow us to

do is to make empirical study of the more general phenomenon of computation.

And, to the extent that we believe human intelligence to be at least partly (if

not wholly) computational in nature, what AI systems allow us to do is to make
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empirical study of the phenomenon of computation in the context of intelligent

behavior.

But what, exactly, can the study of knowledge representations and reasoning pro-

cesses in AI systems tell us about mental representations and cognitive processes

in people? While some AI systems are designed to realistically model certain

human cognitive or neural processes, not all of them are (and in fact probably

most are not). All AI systems, though, can still tell us something about human

intelligence, because each and every one is a small experiment that tests a specific

theory of knowledge representation—i.e., the extent to which a particular set of

knowledge representations and reasoning processes will lead to a particular set

of outcomes.

Thagard (1996) devised a very nice scheme for describing how such computational

theories of representation can be evaluated along five different dimensions, with

each contributing in its own way to the study of human cognition (reordered and

somewhat paraphrased here):

1. Psychological plausibility refers to the extent to which a particular com-

putational theory matches up with what we know about human psychology,

for instance in terms of component processes (memory, attention, etc.) or

resulting behaviors (reaction times, errors, etc.).

2. Neurological plausibility refers to the extent to which a particular com-

putational theory matches up with what we know about the human brain,

for instance in terms of functional divisions of the brain or connectionist

styles of processing.

3. Practical applicability refers to the extent to which a particular com-

putational theory supports useful tools that benefit society, for instance in

terms of assistive technologies that help people learn or perform complex

tasks.

4. Representational power refers to the extent to which a particular com-

putational theory is capable of representing certain classes of knowledge and
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reasoning. To take a simple example, a representational system consisting

only of integers can perfectly represent the number 0 but can only imper-

fectly represent the number π. Evaluating the representational power of a

particular theory in essence asks the question, “What is possible, under the

terms of this theory?”

5. Computational power refers to the extent to which a particular compu-

tational theory can support various high-level forms of reasoning, such as

planning, learning, and decision making, within reasonable computational

bounds of memory and time. Evaluating the computational power of a par-

ticular theory in essence asks the question, “What is feasible, under the

terms of this theory?”

The first two dimensions from this list, psychological and neurological plausibil-

ity, are perhaps what come most readily to mind when one thinks of using AI

systems to study human cognition. Certain classes of AI systems, e.g., compu-

tational cognitive models, biologically-inspired cognitive architectures, etc., are

generally evaluated along these two dimensions. Many other classes of AI sys-

tems, e.g., self-driving cars, intelligent tutors, applied machine learning systems,

etc., are evaluated primarily along the third dimension, for their practical appli-

cability. The last two dimensions, representational and computational power, are

sometimes less explicit in discussions of AI research, though implicitly, the ques-

tions of what is possible and what is feasible drive the design and development of

all AI systems.

Here, the contributions of AI systems for understanding human visual mental

imagery are discussed primarily in light of these last two dimensions, represen-

tational and computational power. Certainly, investigating the degree to which

such systems exhibit psychological or neurological plausibility, and how such sys-

tems can be of practical benefit to society, are also important, but these questions

are not addressed here. Another important factor in recent AI progress, espe-

cially in considerations of computational feasibility, has been the rapid expansion
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of hardware capabilities, especially in hardware optimized for performing many

parallel computations. While continued hardware developments are likely to be

critical in this and many other areas of AI research, these developments are not

discussed here.

This article does aim to answer two fundamental questions about visual-imagery-

based AI systems. First, what might visual imagery look like in an AI system, in

terms of the internal representations used by the system to store and reason about

knowledge? Second, what kinds of intelligent tasks would an imagery-based AI

system be able to accomplish? The first question is answered by providing a

working definition of what constitutes an imagery-based knowledge representa-

tion, and the second question is answered through a literature survey of imagery-

based AI systems that have been developed over the past several decades of

AI research, spanning task domains of: 1) template-based visual search; 2) spa-

tial and diagrammatic reasoning; 3) geometric analogies and matrix reasoning; 4)

naive physics; and 5) commonsense reasoning for question answering. This article

concludes by discussing three important open research questions in the study of

visual-imagery-based AI systems—on evaluating system performance, learning

imagery operators, and representing abstract concepts—and their implications

for understanding human visual mental imagery.

2 A Definition of Visual-Imagery-Based AI

In humans, we use the term visual perception to refer to how people see visual

information coming in from the outside world, and we use the term visual mental

imagery to refer to how people think using visual, image-like internal mental

representations. Importantly, visual mental imagery can take place using inputs

from visual perception, e.g., being asked to look at and mentally manipulate a

given image, or using inputs from other modalities, e.g., creating a mental image

from reading text, like: “Visualize a fuzzy yellow kitten.”
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Unfortunately, in AI, terms like visual thinking, visual intelligence, and visual rea-

soning are often used interchangeably and confusingly to refer to various forms of

visual perception, visual-imagery-based reasoning, or other, non-imagery-based

forms of reasoning about visual knowledge. Therefore, in order to clearly de-

fine the notion of visual-imagery-based AI, we must first distinguish between the

format of an AI system’s input representations and the format of its internal

representations.

Just as humans can receive perceptual inputs in many different modalities, an

AI system may receive input information in any one (or more) of many different

formats, including visual images, sounds, word-like symbolic representations, etc..

Given the information contained in these inputs, the AI system may then convert

this information (through “perceptual processing”) into one or more different

formats to store and reason about this information internally, e.g., as visual

images, sounds, word-like symbolic representations, etc. A visual-imagery-

based AI system is one that uses visual images to store and reason

about knowledge internally, regardless of the format of the inputs to

the system. Figure 1 shows a simple example of this distinction.

(a) (b)

Figure 1: A simple illustration of four different types of AI systems for answering the ques-
tion, “Are these two shapes the same or different?” (a) The inputs to the AI system are
visual images of the two shapes, which can either be converted into internal verbal labels
(top) or retained internally as visual images (bottom). (b) The inputs to the AI system are
verbal labels of the two shapes, which can either be retained internally as verbal labels (top)
or converted into internal visual images (bottom). While all four of these types of systems
could be classified as AI systems for visual reasoning, only the two systems illustrated by
the bottom pathways would be classified as visual-imagery-based AI systems.

While there have been many AI systems designed to process visual inputs, as
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demonstrated by the field of computer vision, the vast majority of AI systems

designed for non-perceptual tasks use internal representations that are proposi-

tional, and not visual. Propositional representations are representations in which

the format of the representation is independent of its content (Nersessian 2008).

Examples of many commonly used propositional representations include logic, se-

mantic networks, frames, scripts, production rules, etc. (Winston 1992). Figure

2 shows an illustration of the “pipeline” of intelligence in a typical propositional

AI system. While inputs might initially be received in the form of visual images

(or sounds, etc.), they are converted into propositional representations before any

reasoning takes place.

In contrast, consider adding a second information pathway to this AI system

diagram, as shown in Figure 3. This second pathway illustrates the system’s

use of visual images as part of its internal knowledge representations. These

internal visual images can come from visual inputs (taken as-is or converted into

different, perhaps simplified images) or from inputs received in other modalities

that undergo conversion into images. Regardless of the input format, reasoning

along this pathway can then take place using these internal image representations.

This dual-process pipeline of intelligence allows for the use of both imagistic

and propositional representations to solve a given task, very much in the spirit of

Paivio’s dual-coding theory of mental representations in human cognition (Paivio

2014). Visual-imagery-based AI systems are those that fall into this dual-process

category. Some of the AI systems reviewed in this paper use primarily visual-

image-based representations, though they might still keep some information (like

control knowledge about how to perform a task) represented propositionally.

There are also several AI systems that explicitly follow an integrated approach

of using both visual and propositional representations of task information, either

in sequential steps or in parallel.

Ultimately, one might expect to see AI systems that use a multi-process approach

to intelligence, with access to many different modality-specific pathways of rea-
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soning. In addition, these pathways need not stay separated, as they are shown

in Figure 3, but instead can be intertwined, with reasoning mechanisms that

can flexibly compare and combine many different types of internal knowledge

representations. Such flexibility to move between and combine different kinds

of representations is undoubtedly a core aspect of human intelligence, and one

that is likely to play an increasingly important role in AI systems in the coming

decades.

Figure 2: A “propositional pipeline” for intelligent behavior in an AI system. In this simple
illustration, the system receives inputs in the form of visual images, which are processed
using a perceptual module to extract information that is then stored in various propositional
formats. Reasoning takes place over these internal, propositional knowledge representations,
in order to produce new knowledge and actions.

2.1 Three criteria for visual-imagery-based representa-

tions

In humans, visual mental imagery meets three criteria: 1) the mental represen-

tations are image-like, in that they are represented in retinotopically organized

brain areas; 2) they do not match concurrent perceptual inputs; and 3) they

play some functional role in performing intelligent tasks (Kosslyn, Thompson, et

al. 1995; Kosslyn, Pascual-Leone, et al. 1999; Slotnick, Thompson, and Kosslyn
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Figure 3: A “dual-process pipeline” for intelligent behavior in an AI system. In this simple
illustration, the system receives inputs in the form of visual images, which are processed
using a perceptual module to extract information that is then stored and reasoned about
either as simplified visual images (top pathway) or in various propositional formats (bottom
pathway). Reasoning processes have access to both formats of knowledge representation, in
order to produce new knowledge and actions.

2005). The same three criteria can be adapted to define visual-imagery-based

knowledge representations in AI systems.

Criterion 1: Visual-imagery-based representations must be 1) image-

like, i.e., iconic, and 2) visual.

While this observation seems simple enough, the question of how to define “image-

like” requires some consideration. What makes a knowledge representation image-

like is that the representation itself in some way resembles what it represents,

i.e., there is some structural correspondence between the format of the represen-

tation and its content. Representations that have this property of resemblance

or structural correspondence are often called iconic, as opposed to propositional

representations (as described above) that demonstrate no such correspondence

between format and content (Nersessian 2008).

For example, if we consider a picture of a cat, there are spatial relationships in

the picture that are the same as the spatial relationships present in the actual
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cat. The iconic representation does not, of course, preserve every single property

of the cat; as all representations are, it is still a simplification and an abstraction

(Davis, Shrobe, and Szolovits 1993), but it is constrained to preserve at least

some dimension of information about the cat in a structurally coherent way.

The word “cat,” on the other hand, is a propositional representation because it

preserves no information about the cat in its structure; the relationship between

the word and what it represents is completely arbitrary.1

The iconic versus propositional distinction often goes by other names.2 Iconic

representations are sometimes called analogical or depictive. Propositional rep-

resentations are sometimes called descriptive. The iconic property is sometimes

defined in terms of homomorphism or isomorphism between the representation

and what is represented (Gurr 1998), though many other kinds of definitions have

also been proposed (see Shimojima 1999, for a review).

So far, we have defined an imagery-based representation as one that is iconic,

but iconic representations do not necessarily have to be visual. In particular,

iconic representations can exist in many different modalities, including auditory,

haptic, olfactory, etc., and in fact humans do have access to mental imagery in

all of these modalities (e.g., Reisberg 2014; Yoo et al. 2003; Stevenson and Case

2005). While these modalities would all be highly interesting to study from an

AI perspective, this paper focuses just on imagery in the visual modality, which

can be defined as using knowledge representations that are both iconic and that

capture appearance-related characteristics (visual and spatial information) of the

1Linguistic tokens are often, but not always, propositional representations. The linguistic device of ono-
matopoeia describes one class of words whose phonological structure resembles the auditory properties of
their referents. Pictographic or manual alphabets can contain words whose visual structure resembles the
visual properties of their referents.

2The modal versus amodal distinction is related but refers to a slightly different property of a knowledge
representation. A representation is modal if it is instantiated in the same representational substrate that
is used during perception (Nersessian 2008). For example, in humans, visual mental imagery would be
classified as a modal representation because it is instantiated in many of the same retinotopic brain regions
that are used for perception. Amodal representations do not have this property. Classifying representa-
tions in an AI system as modal or amodal is not totally straightforward, as what constitutes the system’s
“perception” is also to some extent a matter of definition. This paper focuses primarily on the iconic versus
propositional distinction, with this brief mention of modal versus amodal included mainly as a point of
clarification, as the terms have considerable overlap in the literature on knowledge representations.
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things that are being represented.

What does this definition look like, in practice? Iconic visual representations

in an AI system are essentially those that are array-based, in which the

spatial layout of the array preserves spatial information about what

is being represented. Individual elements in the array can represent low-level

visual features such as intensity, color, or edges—for example, pixel-based RGB

images would fall into this category—or individual elements in the array can

correspond to higher-level symbolic labels—for example, a simple diagram like

cat-dog-horse embodies a small set of spatial relationships among the three

objects. Such array-based representations can exist in one, two, three, or even

four dimensions; an uncompressed movie file is an example of a four-dimensional

iconic visual representation.

Criterion 2: Visual-imagery-based representations must differ from

concurrent perceptual inputs.

In addition to being iconic and visual, visual-imagery-based representations can-

not always match what is coming in through the AI system’s “perceptual mod-

ule,” i.e. what is provided to the AI system as input, whether through image

sensors or manually fed into the system. This means that the AI system must

have some kind of array-based buffer that can store visual information and retain

it, even if the visual inputs change or if the inputs are not visual in the first place.

According to this rather basic definition, any AI system that stores any visual

images at all would meet this second criterion, and thus could be said to have

a rudimentary form of visual-imagery-based representations. To take a slightly

more stringent interpretation, we might say that control over imagery-based rep-

resentations cannot come from perception, meaning that the AI system must have

some set of internal capabilities for instantiating and manipulating these repre-

sentations. While the specifics of such capabilities can vary from one system to

the next, that these capabilities exist can be considered to be a requirement for

visual-imagery-based AI. Examples of commonly implemented capabilities, such
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as rotation, translation, and composition, are described in Section 2.2 on visual

transformations.

Criterion 3: Visual-imagery-based representations must play some

functional role in performing intelligent tasks.

Finally, the third criterion requires that the imagery-based representations serve

some functional role in intelligent behavior. In an AI system, this means that

the representations must contribute in some nontrivial way to solving the task

that the system is designed to address. In humans, some of the most convincing

evidence that visual mental imagery serves a functional role, and is not just a

byproduct of other reasoning processes, comes from studies that interfere with a

person’s mental imagery ability using transcranial magnetic stimulation, or TMS

(Kosslyn, Pascual-Leone, et al. 1999).

For an AI system, a simple thought experiment that gets at the same issue is

to ask, “If we delete the imagery-based representations from this system, would

its performance suffer?” This heuristic is especially useful for thinking about

many AI systems that claim to model imagery-like processes but use a core set

of propositional representations to drive their functionality; these systems often

have a “drawing” subroutine that is used only to visualize the reasoning steps

to the user, but the images themselves are not actually used for reasoning. Such

systems, even though they might be capable of producing image-like represen-

tations, are not actually using these representations to solve the task, and so

should not qualify as being imagery-based AI systems.

2.2 Visual transformations

In order to effectively use visual-imagery-based representations to solve a task,

an AI system must have not only the ability to create and maintain such rep-

resentations, but also some means of reasoning about the information contained

inside them. In general, systems of knowledge representation are not well speci-
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fied without the inclusion of a set of valid inference mechanisms that can operate

over the symbols in that representation (Davis, Shrobe, and Szolovits 1993).

For example, a knowledge representation based on logic should include both the

specification of logical symbols as well as rules for deduction.

Studies of visual mental imagery in humans have identified several key inference

mechanisms, in the form of visual transformations, that seem to be implicated

many different imagery-related task domains:

1. In-plane image translation or scanning (Finke and Pinker 1982; Kosslyn,

Ball, and Reiser 1978; Kosslyn 1973; Larsen and Bundesen 1998).

2. Image scaling or zooming, which corresponds to out-of-plane translation

(Bundesen and Larsen 1975; Larsen, McIlhagga, and Bundesen 1999).

3. Image rotation (Cooper and Shepard 1973; Zacks 2008).

4. Image composition including intersection (Soulières, Zeffiro, et al. 2011),

union (Brandimonte, Hitch, and Bishop 1992b; Finke, Pinker, and Farah

1989), and subtraction (Brandimonte, Hitch, and Bishop 1992b; Brandi-

monte, Hitch, and Bishop 1992a).

Most of the visual-imagery-based AI systems described in this paper implement

some or all of these transformations, though the inclusion of particular transfor-

mations and the details of their operation often differ from one AI system to the

next. Just as within the world of logic-based representations, there are many

different frameworks that have different rules for representation and inference,

we need not commit to a single formulation for all imagery-based representations

but instead can entertain a variety of different approaches that collectively fall

within the category of visual imagery.

As a final comment on transformations, one term often conflated with the use of

visual transformations in imagery-based representations is that of transformation

invariance, which is often discussed in the context of representations used for

visual classification. Transformation invariance refers to the ability of a classifier

to correctly classify inputs that have been transformed in ways that should not
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affect the class label. For example, a cat classifier that demonstrates rotation

invariance should correctly recognize cats that are upside down, in addition to

those that are right-side up. Other commonly discussed types of transformation

invariance in visual classification include translation invariance, scale invariance,

lighting invariance, etc.

Note that transformation invariance can be achieved using different mechanisms.

For example, in order to successfully classify an upside-down cat, a classifier

might first apply a rotation to the upside-down cat, and then use an upright-

only cat classifier on it. Alternatively, the classifier might have a representation

of cats that is intrinsically invariant to rotations, for example by representing

cats according to the shapes of their ears, tails, and whiskers, regardless of

the orientation of these elements in the image. The latter approach of creat-

ing “transformation-invariant representations,” i.e., designing the representation

itself to be immune to transformations, is a common approach in AI (Kazhdan,

Funkhouser, and Rusinkiewicz 2003; Földiák 1991), and aligns with findings from

cognitive science that transformation-invariant properties exist in human mental

representations (Booth and Rolls 1998).

However, in humans, the two processes of 1) actively applying transformations

to mental representations and 2) creating and using representations that have

intrinsic transformation-invariant properties, are dissociable (Farah and Ham-

mond 1988) and show distinct patterns of neural activation (Vanrie, Béatse, et

al. 2002). Both processes likely play a significant role in the robust visual classi-

fication performance than humans are capable of (Tarr and Pinker 1989; Vanrie,

Willems, and Wagemans 2001).

Likewise, continued AI research both on applying visual transformations and

on creating transformation-invariant representations will likely be valuable in

understanding many aspects of visual intelligence. This article focuses primar-

ily on discussions of visual transformations and not of transformation-invariant

representations, as the former are more directly relevant to imagery-based repre-

15



Maithilee Kunda To appear in Cortex (2018)

sentations and reasoning.

3 A Survey of Visual-Imagery-Based AI Sys-

tems

This section presents a survey of AI systems that use visual-imagery-based rep-

resentations, organized by task domain: template-based visual search (Section

3.1), spatial and diagrammatic reasoning (Section 3.2), geometric analogies and

matrix reasoning (Section 3.3), naive physics (Section 3.4), and commonsense

reasoning (Section 3.5). Each section first describes a few examples of proposi-

tional AI approaches that have been developed to solve the given task, and then

identifies AI systems that solve these tasks using an imagery-based approach.

Imagery-based AI systems were located by searching the literature using Google

Scholar, and especially following reference trails backwards from the later papers

as well as forwards from the earlier papers, using Google Scholar’s “cited by”

function. Where multiple papers appear describing related work from a single

research group, one representative paper has been selected for inclusion in this

survey. The grouping of AI systems into task domains was done post hoc. While

every effort was made to include all published visual-imagery-based AI systems,

undoubtedly many have been left out; this survey at least gives a sampling of

the AI research that has emerged in this area over the past several decades.

3.1 Template-based visual search

Perhaps the simplest occurrence of visual imagery in AI systems is the use of

image templates for visual search. In visual search, a search target must be

visually located within a search environment. A very simple visual search task

might be to find an instance of the letter “x” somewhere on this page. A more

complex visual search task might be to find something in your office to use as an
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umbrella when it’s raining (and when, inevitably, you’ve left your actual umbrella

at home).

During the process of visual search, an AI system can represent the search target

in many different ways. In feature-based search, the target is represented by one

or more visual features, e.g., “Find the object that is blue and round.”

In contrast to feature-based search, an AI system can instead represent the search

target using an image that captures aspects of the target’s visual appearance.

This image is called a template, and the corresponding search process is called

template-based search. A template meets the criteria for being a visual-imagery-

based representation, as described in Section 2.1, because it is an iconic visual

representation of the search target, it differs from the visual “perceptual” inputs

received by the AI system as it inspects the search environment, and it plays a

functional role in task performance.

A very simple template-based visual search algorithm might work as follows:

1. Take two images A and B as input, where image A (the template) represents

the search target, and image B represents the search environment.

2. Slide the template image A across all possible positions relative to image B.

At each position, compute a measure of visual similarity between A and B,

for example by calculating a pixel-wise correlation between the two images.

3. Choose the position in image B that yields the highest similarity value to

be the final output of the search process.

While this simple algorithm is not particularly efficient or robust to noise, the

basic idea of template-based search has been used in many successful AI appli-

cations, including recognition of faces (Brunelli and Poggio 1993), traffic signs

(Gavrila 1998), medical images (Hill et al. 1994), and more. Extensions to the

basic algorithm include more efficient ways to traverse the search space, such

as through the use of gaze or attention models (Rao et al. 2002; Zelinsky 2008;

Kunda and Ting 2016; Palmer and Kunda 2018) as well as more flexible ways

to represent the template and compute similarity, such as through the use of
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deformable templates (Yuille, Hallinan, and Cohen 1992).

A complete review of the literature on template-based visual search would be

far too long to fit into this paper, and so readers are referred instead to existing

reviews (Jain, Zhong, and Dubuisson-Jolly 1998; Brunelli 2009).

3.2 Spatial and diagrammatic reasoning

It might seem like an obvious idea to use visual-imagery-based AI systems for

spatial and diagrammatic reasoning tasks. However, the majority of AI systems

designed to solve such tasks rely mainly on propositional knowledge represen-

tations. (As discussed in Section 2, the vocabulary used by different research

groups can be confusing; some groups refer to a “visuospatial reasoning system”

to mean an AI system that reasons about visual inputs, regardless of its internal

format of representation, while others use the same term to mean a system that

reasons using internal visual representations, regardless of the format of the in-

put task. Both might qualify as spatial or diagrammatic reasoning systems, but

only the latter would qualify as visual-imagery-based AI under the terms of the

criteria outlined in Section 2.1.)

There have been many successful schemes devised for representing visuospatial

knowledge in propositional form, for instance by propositionally encoding rela-

tions like is-left-of(X, Y). Given such a knowledge representation scheme,

an AI system can draw upon this knowledge to make even very complex infer-

ences about a spatial or diagrammatic input problem. For example, one very

early effort proposed an AI system that used propositional representations of

visuospatial information to generate geometry proofs (Gelernter 1959).

In another early effort, Baylor (1972) built an AI system that reasoned about

spatial reasoning problems from a standardized block visualization test. An ex-

ample problem from this test goes something like this: “Two sides of a 2 inch

cube that are next to each other are painted red, and the remaining faces are

painted green. The block is then cut into eight 1 inch cubes. How many cubes
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have three unpainted faces?” Baylor’s AI system worked by first constructing

an internal representation of the original block, then performing a “mental sim-

ulation” to cut it, and finally inspecting the results to provide the final answer.

However, the internal block representations stored by this AI system were not

iconic; they were stored and accessed as structured lists of vertices, and not as

array-based representations. So while this AI system was developed to explore

certain problem-solving aspects of “visual mental imagery,” its representations

were not actually imagery-based in a strict sense.

Continuing in this vein, there have been many successful and interesting propo-

sitional approaches to spatial and diagrammatic reasoning demonstrated in AI

research. Examples include AI systems that perform qualitative spatial reason-

ing (Cohn et al. 1997), understand general diagrams (Anderson and McCartney

2003), solve visual analogy problems (Croft and Thagard 2002; Davies, Goel,

and Yaner 2008), understand engineering drawings (Yaner and Goel 2008), rea-

son about human-drawn sketches (Forbus et al. 2011), perform path planning

(Goel et al. 1994), and many, many more (see Glasgow, Narayanan, and Chan-

drasekaran 1995 for a review of many of the basic research thrusts in this area).

Some approaches to diagrammatic reasoning use graph-based knowledge repre-

sentations (e.g., Larkin and Simon 1987); while graph-based representations have

a bit more internal structure than purely propositional representations, they still

do not strictly meet our criteria for imagery-based representations from Section

2.1, as they are not array-based, though it could perhaps be argued that they

embody a variant of visual imagery.

There have been far fewer AI systems that perform visuospatial or diagram-

matic reasoning using strictly visual-imagery-based representations. The com-

mon themes shared by these systems are the use of array-based representations to

store iconic visual representations, and the application of visual transformations

(e.g., translation, rotation, scaling, etc.) to these array-based representations in

order to solve problems from one or more task domains.
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Kosslyn and Shwartz (1977) describe an AI system that can construct, inspect,

and transform simple images that are stored as unit activations in a 2D ma-

trix, as shown in Figure 4a. Visual transformations include translation, scaling,

and rotation. This system does not solve any particular task, per se, but was

developed to elucidate some basic computational processes of visual imagery.

Mel (1990) describes an imagery-based AI system used in motion planning for

a robot arm, in which the robot first learns mappings between its commanded

servo outputs and its own visual percepts of the movements of its arm, and then

plans new motions essentially by generating and inspecting new internal images

of how it wants its arm to move.

Glasgow and Papadias (1992) present one of the better known works on imagery-

based AI. They describe a system that uses nested arrays to store imagery-based

representations at multiple levels of abstraction. At the lowest level, 3D arrays

serve as iconic representations of shape and are used for problem solving in task

domains like 3D molecular shape analysis, as shown in Figure 4b.

Tabachneck-Schijf and colleagues (1997) describe an AI system called Compu-

tation with Multiple Representations (CaMeRa) that uses both propositional

and imagery-based representations to interpret 2D line graphs in the domain of

economics. The CaMeRa system has a visual buffer that uses array-based rep-

resentations and transformations to “visually” trace different imagined lines on

a graph. For instance, in order to detect where some point lies relative to the

x-axis of the graph, the system essentially visualizes a vertical line coming down

from the point and then observes where this line crosses the x-axis, all within its

visual buffer. Figure 4c shows an illustration of the visual buffer in the CaMeRa

system.

Roy and colleagues (2004) describe an imagery-based module for a robotic arm

that enables the robot to reason about differing visual perspectives of its own

environment. As shown in Figure 4d, the robot generates a visual image that

depicts the scene in front of it (objects on a table) from the perspective of a
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human sitting across the table; in this view, the robot is visualizing not just how

the objects look to the human but also its own appearance.

There have been several imagery-based approaches proposed to solve shape pack-

ing problems, especially for irregular shapes. Propositional approaches to shape

packing often represent shapes as parameterized polygons, while imagery-based

approaches represent shapes in raster (i.e. array-based) formats (Bouganis and

Shanahan 2007; Bennell and Oliveira 2009).

Lathrop and colleagues (2011) implemented a visual imagery extension to the well

known SOAR cognitive architecture (see also Wintermute 2012). The resulting

system uses imagery-based representations to solve problems in a simple block-

stacking task domain as well as in a more complex, multi-agent mapping and

scouting task domain. In both domains, the system visualizes the results of its

actions before it executes them, in order to help in planning and action selection.

Other AI systems for spatial and diagrammatic reasoning that include some

visual-imagery-based representational component include NEVILLE by Bertel

and colleagues (2006), DRS by Chandrasekaran and colleagues (2011), PRISM

by Ragni and Knauff (2013), and Casimir by Schultheis and colleagues (2011;

2014).

(a)

(b) (c)
(d)

Figure 4: Examples of internal, visual-imagery-based representations used by AI systems
for spatial or diagrammatic reasoning tasks. (a) Kosslyn and Shwartz 1977. (b) Glasgow
and Papadias 1992. (c) Tabachneck-Schijf, Leonardo, and Simon 1997. (d) Roy, Hsiao, and
Mavridis 2004.

One kind of spatial reasoning task worth noting separately is that of reasoning
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about maps. There are many ways for an AI system to store map-like infor-

mation, including as a set of propositionally represented statements (e.g., Myers

and Konolige 1994). Occupancy grids, now a very common approach, were first

introduced by Moravec and Elfes (1985) as a way for mobile robots to aggregate

and store information about a new environment during exploration, as shown in

Figure 5a. An occupancy grid is a 2D or 3D array-based data structure that

corresponds to a map of the environment; the contents of each cell reflect the

robot’s estimate of what exists at the corresponding location in the actual envi-

ronment. Many approaches in robotics, such as Kuipers’ (2000) Spatial Semantic

Hierarchy, combine occupancy-grid-based and propositional map representations.

Occupancy grids meet the requirements for an imagery-based representation be-

cause they are iconic and often visual (though some occupancy grids may capture

non-visual information about the environment as well), they do not correspond

directly to any single visual percept received by the robot, and they play a func-

tional role in the robot’s spatial reasoning. In many occupancy-grid-based ap-

proaches, while the grid itself might be stored in an imagery-based way, the

inference operations performed over these representations (like planning a short-

est path between two points) are often defined in terms of graph algorithms and

not in terms of visual transformations. However, there have been at least two

attempts to devise path planning algorithms that use visual transformations over

occupancy grids, as shown in Figures 5b and 5c (Steels 1988; Gardin and Meltzer

1989).

3.3 Geometric analogies and matrix reasoning

Geometric analogies are a class of problems often found on human intelligence

tests that follow the standard analogy problem format of, “A is to B as C is to

what?” In a geometric analogy problem, A, B, and C are all images, and the

correct answer must be selected from a set of possible choices, as shown on the

left of Figure 6. Matrix reasoning problems are similar; a matrix of images is
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(a)
(b)

(c)

Figure 5: Examples of internal imagistic representations used by AI systems for mapping
and path planning. (a) Moravec and Elfes 1985. (b) Steels 1988. (c) Gardin and Meltzer
1989.

presented with one missing, and the correct missing image must be selected from

a set of possible choices, as shown on the right of Figure 6.

Figure 6: Left: Example geometric analogy problem (Evans 1968). Right: Example matrix
reasoning problem similar to those found on the Raven’s Progressive Matrices tests (Kunda,
McGreggor, and Goel 2013).

Both of these types of problems have appeared on human intelligence tests for

decades. One such series of matrix reasoning tests, the Raven’s Progressive Ma-

trices, are used as standardized measures of fluid intelligence in numerous clinical,

scientific, and educational settings (Raven, Raven, and Court 1998), and in fact

the Raven’s tests have been identified in the field of psychometrics as being the

best single-format measure of general intelligence that exists (Snow, Kyllonen,

and Marshalek 1984).
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Evans (1968) demonstrated an AI system called ANALOGY that solves geometric

analogy problems using propositional representations. ANALOGY contains a

perceptual module that takes line descriptions of a geometric analogy problem

as input and produces propositional list-based representations of the problem

as output, which are then used by ANALOGY during the rest of the solution

process. For example, the first image A in the geometric analogy problem shown

on the left of Figure 6 might be converted into something like:

((P1 P2) (INSIDE P2 P1) (P1 P2 ((1.2) . (0.0) . (N.N.))))

This representation roughly translates to saying, “There are two figures, P1 and

P2. P2 is inside P1. P1 is 1.2 times larger than P2, the relative rotation between

P1 and P2 is 0.0 degrees, and there are no reflection relationships between P1

and P2.”

Many subsequent AI systems have used similar formats of propositional rep-

resentations to solve both geometric analogy and matrix reasoning problems,

investigating many interesting aspects of this task domain including maintaining

goals and subgoals in working memory (Carpenter, Just, and Shell 1990), logical

reasoning techniques (Bringsjord and Schimanski 2003), techniques for analogical

mapping between problem elements (Lovett et al. 2009), representing hierarchi-

cal patterns in problem information, (Stranneg̊ard, Cirillo, and Ström 2013), and

the induction of solution rules (Rasmussen and Eliasmith 2011).

However, these propositional AI systems do not explain a different type of solu-

tion strategy that humans can and do use, which is to recruit visual mental im-

agery instead of relying purely on propositional (e.g., verbal or linguistic) mental

representations. There is strong evidence that humans generally use a combina-

tion of imagery-based and propositional representations to solve these kinds of

problems (DeShon, Chan, and Weissbein 1995; Prabhakaran et al. 1997). (See

Kunda, McGreggor, and Goel 2013 for a much more detailed review of the liter-

ature on both human and AI problem-solving strategies on the Raven’s tests.)
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Early theoretical work in AI suggested the kinds of algorithms that might play

a role in imagery-based solution strategies to matrix reasoning problems, though

the algorithms were not implemented in an actual system (Hunt 1974). More re-

cently, Kunda and colleagues (2013) constructed an AI system called the Affine-

and-Set Transformation Induction (ASTI) system that uses visual images to rep-

resent information from matrix reasoning problems, and reasons about these

images using imagery operations such as translation, rotation, and composition.

The ASTI system meets our criteria for a visual-imagery-based AI system because

1) it uses iconic visual representations of problem information, 2) these images

differ from perceptual inputs because they are translated, rotated, and otherwise

altered to form new images that are not contained anywhere in the original prob-

lem, and 3) the images play a functional role in the system’s problem-solving

procedures.

To solve a matrix reasoning problem, the ASTI system follows a problem-solving

approach called constructive matching (Bethell-Fox, Lohman, and Snow 1984).

First, the ASTI system tries out a series of imagery operators on different images

from the original problem matrix until it finds an operator that can “visually

simulate” the change that occurs across any single row or column of the matrix.

Then, it uses this operator to construct a new image that fits in the blank space

of the matrix. Finally, it compares this constructed answer to the list of answer

choices in order to select the most visually similar answer choice.

The ASTI system was tested against the Standard version of the Raven’s Pro-

gressive Matrices series of tests, which is of medium difficulty and is intended

for children and adults of average ability. Out of 60 total problems on the test,

the ASTI system answered 50 correctly, which is around the level of performance

expected for typically developing 16-17-year-olds (Kunda 2013). This result was

the first concrete proof that it is possible (from a computational perspective)

to get a score of 50 using a purely imagery-based approach. Prior to this find-

ing, a common belief about the Raven’s tests was that imagery-based reasoning
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could only solve the very easiest problems, and that solving the harder problems

required switching to a propositional strategy (Hunt 1974; Kirby and Lawson

1983). The ASTI result also lends weight to findings that certain individuals on

the autism spectrum appear to rely more heavily on visual brain regions when

solving Raven’s problems than do neurotypical individuals, with no decrease in

accuracy (Soulières, Dawson, et al. 2009).

A related, parallel AI effort by McGreggor and colleagues (2014) investigated

imagery-based reasoning on the Raven’s test using fractal image representations,

which involve using imagery-like operations to construct representations of prob-

lem information that capture similarity and self-similarity at multiple spatial

scales across different sets of input images. These fractal image representations

were used as part of an AI system that solved Raven’s test problems (McGreggor

and Goel 2014) as well as visual odd-one-out problems (McGreggor and Goel

2011), and the method was also later applied to analogy-based task transfer in

robotics (Fitzgerald et al. 2015).

3.4 Naive physics

How do intelligent systems (human or AI) represent and reason about the physical

nature of the world? Clearly, one does not need to know the correct Newtonian

physics equations in order to predict that a ball will roll down a hill. Early work

in AI proposed the use of qualitative representations of physics knowledge to

support fast, approximate “naive physics” reasoning. For example, instead of

representing the exact volume of liquid in a glass of water, we might think of it

as being completely full, mostly full, mostly empty, etc. These approximations

are “close enough” to generate successful answers to many questions about what

will happen to this glass water in different situations. Many AI systems have

adopted such propositional forms of representation to reason about qualitative

physics concepts (Forbus 1984; De Kleer and Brown 1984).

While these AI systems were intended primarily as models of human reasoning,
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other areas of computer science developed techniques of physics-based modeling,

i.e., using quantitative propositional representations to simulate physical situa-

tions, using physics equations as the core form of knowledge in the computer

system. Some recent work blends these two by proposing simulation-based mod-

els of naive physics reasoning (Johnston and Williams 2009), including proposals

that perhaps humans use some form of simulation-based reasoning as well as qual-

itative reasoning, though the format of the core physics knowledge in humans is

still an open question (Hamrick, Battaglia, and Tenenbaum 2011).

A third view is that naive physics reasoning in humans might be based on inter-

nal simulations that are not mathematically defined but rather visually defined,

i.e., using visual mental imagery. In line with this view, Funt (1980) presented

an AI system called WHISPER that used interactions between neighbors in a

connected network of units to simulate basic physical processes in a block world

domain, such as object stability and toppling, as shown in Figure 7a. Gardin and

Meltzer (1989) developed an AI system that uses an imagery-based representa-

tion formed of connected units that simulates flexible objects like rods of varying

stiffness, strings, and liquids by changing parameters on the unit connections, as

shown in Figure 7b. Shrager (1990) described an AI system that uses a com-

bination of imagery-based and other representations to reason about problems

in a gas laser physics domain. Narayanan and Chandrasekaran (Narayanan and

Chandrasekaran 1991) described an AI system that also uses a combination of

imagery-based and other representations to reason about blocks-world problems,

as shown in Figure 7c. Schwartz (Schwartz and Black 1996) described an AI sys-

tem that models unit forces in array-based representations in order to simulate

the rotations of meshed gears, as shown in Figure 7d.

3.5 Commonsense reasoning for question answering

In AI, commonsense reasoning capabilities are held to be critical to virtually every

area of intelligent behavior, including question answering, story understanding,
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(a) (b)
(c)

(d)

Figure 7: Examples of visual-imagery-based representations used by AI systems for reasoning
about naive physics concepts. (a) Funt 1980. (b) Gardin and Meltzer 1989. (c) Narayanan
and Chandrasekaran 1991. (d) Schwartz and Black 1996.

planning, and more (Davis 2014). However, commonsense reasoning remains a

difficult challenge for the field. For example, answering certain questions—e.g.,

“Could a crocodile run a steeplechase?”—is easy for many people but difficult

for most AI systems, requiring not only language processing but also everyday

background knowledge that is hard to encode (Levesque 2014). Answering these

kinds of “commonsense” questions has been proposed as an alternative to the

Turing test as a way to characterize the extent to which a machine demonstrates

intelligence (Levesque, Davis, and Morgenstern 2011).

Over the past few decades, there have been several massive projects undertaken

to construct AI systems that perform commonsense reasoning using propositional

representations of background knowledge. Much of the effort in these projects

has gone into essentially writing down huge amounts of commonsense knowledge

in specialized, interconnected, machine-interpretable formats, as well as into de-

veloping scalable search and reasoning algorithms that can pull this knowledge

together to answer specific questions that are presented to the system.

Lenat’s CYC system (short for “encyclopedia”), begun in 1984, recruited teams

of people to manually enter knowledge statements into the CYC database. An-

other system called Open Mind Common Sense was an early adopter of the

crowdsourcing philosophy, recruiting volunteers over the Internet to contribute

knowledge statements (Singh et al. 2002). More recently, there have been many

AI efforts aimed at automatically extracting structured knowledge from existing
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Internet sources such as Wikipedia (Ponzetto and Strube 2007). IBM’s Watson

system, while not focused specifically on commonsense reasoning per se, defeated

reigning human champions on the game show Jeopardy! by drawing from “a wide

range of encyclopedias, dictionaries, thesauri, newswire articles, literary works,

and so on” (Ferrucci et al. 2010, p. 69).

All of these approaches use propositional representations of knowledge to process

incoming language, reason about the given information, and answer questions

about what has been described. However, another way to approach this kind of

task could be to create a visual image of the situation and then use visual im-

agery operators to manipulate and query the image in order to obtain the desired

information. For example, in response to the crocodile-steeplechase question, one

can visually imagine a crocodile running a steeplechase and then evaluate how

reasonable the scene looks by “inspecting” the generated visual mental image.

Perlis (2016) emphasizes the importance of building AI systems that incorporate

this “envisioning” approach to planning and understanding. Winston concep-

tualizes this type of reasoning as a capability that combines both imagery and

storytelling, often presenting his own table-saw example as a thought experiment

(Winston 2012, p. 25):

As a friend helped me install a table saw, he said, “You should never

wear gloves when you use this saw.” At first, I was mystified, then it

occurred to me that a glove could get caught in the blade. No further

explanation was needed because I could imagine what would follow.

It did not feel like any sort of formal reasoning. It did not feel like I

would have to have the message reinforced before it sank in. It feels

like I witnessed a grisly event of a sort no one had ever told me. I

learned from a one-shot surrogate experience; I told myself a story

about something I had never witnessed, and I will have the common

sense to never wear gloves when I operate a table saw.

There have been numerous AI systems developed over the years that aim to
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answer commonsense-type questions using visual-imagery-based representations.

Not surprisingly, early work in this area focused on using imagery-based represen-

tations to represent and answer questions specifically about spatial relationships

in natural language sentences. In one of the earliest published papers on this

topic, Waltz and Boggess (1979) describe an AI system that constructs 3D de-

scriptions of objects and their relationships, and then uses these 3D descriptions

to answer questions about the scene. However, this system stores objects inter-

nally as sets of numerical coordinates, and the “image” is accessed only implicitly

through calculations about these coordinate values, and so the system does not

strictly meet the criteria for imagery-based representations laid out in Section

2.1.

Many of the other AI systems described in this section similarly use coordinate-

based descriptions of scene models. For example, if a 3D modeling engine is used

(as is often the case) to generate scene descriptions, the internal representation

used by the AI system is the native representation of the 3D modeling engine,

which is often coordinate-based. These systems fall into somewhat of a grey area

regarding imagery-based AI; the spirit of the approach is certainly imagery-like,

but the internal representations used by these systems do not always strictly

meet the criteria for visual-imagery-based representations described in Section

2.1. Regardless, this general area of research is certainly an important one for

the continued development of imagery-based AI systems, and so this section

includes AI systems that are either strictly imagery-based or at least imagery-

based in spirit. Certainly all of these AI systems can produce new images as

outputs (Criterion 1), and these images do not match any perceptual inputs of

these systems (Criterion 2), as shown in Figure 8; all that remains is for the

system to have some reasoning procedure that operates directly on these images

to solve a particular problem (Criterion 3).

A typical AI system in this category is often set up as a question-answering

system. The input to the system is a text description of some situation or scene,
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along with a question about the scene. The system should be able to output the

correct answer to the question. This kind of system is often designed to function

using three distinct modules:

1. A natural language module converts the input text (both the scene de-

scription and the question) into structured, propositional descriptions, for

example in the form of logical statements.

2. An imagery module converts the structured descriptions of the scene into a

2D or 3D scene image that depicts the given scene information.

3. Based on the contents of the question, a reasoning module inspects the scene

image to obtain whatever information is necessary to answer the question.

The first part of this process falls into the category of natural language processing

(NLP), a very broad area of AI. For AI systems that aim to create a visual image

from given language, the language processing step is often specifically geared

towards extracting spatial and temporal relationships.

The second part of this process, constructing an imagined scene, requires that the

system already encodes background knowledge about what different scene objects

and relationships mean. Many systems rely on a predefined knowledge database

that contains default object models (e.g., a 3D model of a typical table) used

to construct the scene. One of the main technical challenges that such systems

must solve is how to reconcile the ambiguity present in a textual scene description

with the specificity of a concrete scene image; solutions include generating mul-

tiple possible scene images (Ioerger 1994) or probability distributions over where

objects might be located (Schirra and Stopp 1993). Some systems attempt to

address the research question of where this knowledge database comes from, i.e.,

how this knowledge can be learned from experience (Schirra and Stopp 1993;

Chang, Savva, and Manning 2014). Figure 8 shows snapshots from the imagined

scenes of several different AI systems that take input language and convert the

given information into new 2D or 3D scene images.

This kind of scene construction by an AI system is sometimes called “text-to-
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(e) (f) (g)
(h)

(i) (j) (k) (l)

Figure 8: Examples of visual-image-based scenes constructed by AI systems based on text-
only inputs. (a) Giunchiglia et al. 1992. (b) Schirra and Stopp 1993. (c) Ioerger 1994. (d)
Bender 2001. (e) Coyne and Sproat 2001. (f) Durupınar, Kahramankaptan, and Cicekli
2004. (g) Seversky and Yin 2006. (i) Johansson et al. 2005. (h) Finlayson and Winston
2007. (j) Chang, Savva, and Manning 2014. (k) Bigelow et al. 2015. (l) Lin and Parikh 2015

scene” conversion. In this literature, the generated scenes are sometimes intended

to be for human consumption, for instance as automated story illustration sys-

tems. Such systems may end with the second part of the process, scene gen-

eration, and not perform any subsequent reasoning over the generated image.

However, these systems do address many central research questions relevant to

general imagery-based AI, such as how visual background knowledge can be en-

coded, how linguistic ambiguities can be resolved, etc.

The third part of the process involves reasoning about the imagined image, often

to answer a question that was received as part of the system’s inputs. Here, the

concrete nature of the imagined image (which poses such challenges in image

creation) is what gives a great advantage for reasoning, because there is much
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information about the scene that was not explicitly described in the initial text

description but is now available for immediate querying by the reasoning module.

To take a simple example, suppose we have two statements, ”The fork is left of

the plate,” and, ”The plate is left of the knife.” Is the fork left of the knife? For

an AI system storing the initial statements in propositional form, even though

the information is sufficient to answer the question, the answer is not immedi-

ately available; some type of inference must chain together the two statements in

order to compare the two objects. However, for an AI system storing the initial

statements as a concrete image, the information about the relative position of the

fork and knife, though never explicitly stated in the input text, is available for

immediate inspection. While in this simple example, there might not be much

computational difference between the two approaches, consider what happens if

we are chaining together a dozen object statements, or a hundred, or a million.

While propositional representations certainly have other advantages, this partic-

ular type of gain in reasoning efficiency for imagery-based representations has

been acknowledged in AI (Larkin and Simon 1987).

4 Looking Ahead

While there has been much progress made in visual-imagery-based AI systems

over the past several decades, as evidenced by the survey presented in Section

3, there is still much to be learned about the computational underpinnings of

visual imagery and their role in intelligence. What follows is a brief discussion

of three important open research questions in the study of visual-imagery-based

AI systems.

How can imagery-based AI systems be evaluated? For many task do-

mains, it is easy to set up objective tests to evaluate how well an AI system is

performing. Natural language understanding can be tested by having conversa-

tional interactions with an AI system, or by having it process a piece of text and
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respond to queries afterwards. Visual perception can be tested by showing the AI

system images or videos, and then having it identify what it has seen. How does

one test the visual imagery capabilities of an AI system? Most of the imagery-

based AI systems discussed in Section 3 were designed to solve problems from

a particular task domain. Some published studies describe quantitative results

obtained from testing the AI system against a comprehensive set of such prob-

lems; other studies describe only a few results from testing the AI system against

representative example problems, and still others present a proof-of-concept of

the AI system with little to no testing.

While there has been an impressive breadth of research across different task

domains, as evidenced by the survey in Section 3, there has not yet been the

kind of decades-long, sustained research focus that has yielded deep AI insights

in other areas, such as, for example, in computer vision, which has involved many

hundreds of research groups around the world studying closely related problems

in visual recognition, segmentation, etc. One issue is that visual mental imagery

in humans is itself difficult to study, with no standardized tests of imagery ability

in wide use. Also, many imagery-related tasks in people are either too easy (e.g.,

mental rotation) or too difficult (e.g., imagining a table saw) to readily tackle as

an AI research project.

Following the example of computer vision, standardized benchmarks of the right

difficulty level can help generate a critical mass of research in a particular task

domain, though of course benchmarks present their own set of issues related to

evaluation. Whether through benchmarks or perhaps more systematic designs of

individual research studies, there is significant need and opportunity for advanc-

ing evaluation methods for imagery-based AI systems.

How are imagery operators learned? In humans, the reasoning operators

used during visual mental imagery (visual transformations like mental rotation,

scaling, etc.) are believed to be learned from visuomotor experience, e.g., watch-

ing the movement of physical objects in the real world (Shepard 1984). However,
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we still have no clear computational explanation for how this type of learning

unfolds. Mel (1986) proposed an ingenious method for the supervised learning of

visual transformations like rotation from image sequences; in this approach, each

transformation operator is represented not as a single image function but instead

as a set of weights in a connectionist network, i.e., a representation that is both

distributed and continuous. Then, weights in this network are updated accord-

ing to a standard perceptron update rule. Mel implemented an AI system called

VIPS that successfully learned simple operators from simulated wireframe im-

age sequences depicting the given transformations. Memisevic and Hinton (2007;

2010) demonstrate an approach that uses more complex connectionist networks

to learn several different transformations in an unsupervised fashion from large

video databases. Seepanomwan and colleagues (2013) propose a robot architec-

ture that successfully combines visual and motor perceptual information to learn

mental rotation by rotating objects and watching how their appearance changes

in a simulated environment.

While many AI systems implement visual transformations as distinct operations

comprising a finite “imagery operator” library (Kunda, McGreggor, and Goel

2013, e.g.), another possibility is that continuous operators could be represented

in terms of distinct, infinitesimal basis functions that can be combined in arbi-

trary ways (Goebel 1990). We still do not know exactly how humans represent

the transformations used in visual mental imagery, though there is evidence that

operators like mental rotation are sometimes easier for people to perform along

primary axes than off-axis (Just and Carpenter 1985). Recent AI advances in

deep learning, if applied to the problem of learning imagery operators, may help

to identify effective forms of low-level representations that facilitate this partic-

ular kind of learning (Bengio, Courville, and Vincent 2013).

The question of how imagery-related reasoning skills are learned is crucial not

only for research in AI but also for human education; visuospatial ability is in-

creasingly viewed as a key contributor to math learning (National Research Coun-
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cil 2009; Cheng and Mix 2014) and to success in many STEM fields (Wai, Lubin-

ski, and Benbow 2009). Moreover, recent research suggests that many different

visuospatial abilities can be improved with training (Uttal et al. 2013). While

it is generally agreed that people learn imagery-based reasoning skills through

perceptual experience, it is less clear what types of experience are most valuable,

and why, and how to design training interventions that precisely target these

learning experiences. AI systems are already used in many different education

domains to improve student learning outcomes, and so perhaps imagery-based AI

systems could serve as tools for improving math and STEM learning by helping

pinpoint how best to boost a person’s imagery-related reasoning skills.

How can imagery-based representations be used to reason about ab-

stract concepts? Most of the imagery-based AI systems listed in Section 3 use

their imagery-based representations to reason about information that is essen-

tially visual. Even for systems that have non-visual inputs, such as the common-

sense reasoning systems described in Section 3.5, the knowledge that is being

represented is generally about things like spatial relationships, the visual appear-

ance of semantic categories, etc. However, in humans, many interesting examples

of visual mental imagery involve reasoning about information that is inherently

abstract and non-visual. For example, both Albert Einstein and Richard Feyn-

man observed that they often thought about abstract physics concepts first us-

ing visual mental images, and only afterwards using equations Gleick 1992; Feist

2008. As Feynman once described to an interviewer Gleick 1992, p. 244:

What I am really trying to do is bring birth to clarity, which is

really a half-assedly thought-out pictorial semi-vision thing. I would

see the jiggle-jiggle-jiggle or the wiggle of the path. Even now when I

talk about the influence functional, I see the coupling and I take this

turn–like as if there was a big bag of stuff–and try to collect it away

and to push it. It’s all visual. It’s hard to explain.

Part of what humans do so marvelously is take cognitive processes that may have
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originally evolved for one purpose (e.g., using visual mental imagery to reason

about space) and use them for something else entirely (e.g., usingvisual mental

imagery to reason about abstract mathematical concepts)—a sort of metaphor-

ical thinking (Lakoff and Johnson 2008). Can imagery-based AI systems ever

tackle the deep thoughts of scientists like Feynman and Einstein? Polland (1996)

compiled an extensive list of mental imagery reports from biographical and auto-

biographical accounts of 38 famous scientists, artists, musicians, and writers, and

analyzed what role mental imagery seemed to play in the creative problem-solving

processes of each subject. Perhaps someday, imagery-based AI systems could help

to explain the computational mechanisms behind these kinds of advanced, open-

ended, and creative problem-solving episodes by some of our greatest thinkers.
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